26,919 research outputs found

    Minimizing Seed Set Selection with Probabilistic Coverage Guarantee in a Social Network

    Full text link
    A topic propagating in a social network reaches its tipping point if the number of users discussing it in the network exceeds a critical threshold such that a wide cascade on the topic is likely to occur. In this paper, we consider the task of selecting initial seed users of a topic with minimum size so that with a guaranteed probability the number of users discussing the topic would reach a given threshold. We formulate the task as an optimization problem called seed minimization with probabilistic coverage guarantee (SM-PCG). This problem departs from the previous studies on social influence maximization or seed minimization because it considers influence coverage with probabilistic guarantees instead of guarantees on expected influence coverage. We show that the problem is not submodular, and thus is harder than previously studied problems based on submodular function optimization. We provide an approximation algorithm and show that it approximates the optimal solution with both a multiplicative ratio and an additive error. The multiplicative ratio is tight while the additive error would be small if influence coverage distributions of certain seed sets are well concentrated. For one-way bipartite graphs we analytically prove the concentration condition and obtain an approximation algorithm with an O(logn)O(\log n) multiplicative ratio and an O(n)O(\sqrt{n}) additive error, where nn is the total number of nodes in the social graph. Moreover, we empirically verify the concentration condition in real-world networks and experimentally demonstrate the effectiveness of our proposed algorithm comparing to commonly adopted benchmark algorithms.Comment: Conference version will appear in KDD 201

    Effects of Time Horizons on Influence Maximization in the Voter Dynamics

    Full text link
    In this paper we analyze influence maximization in the voter model with an active strategic and a passive influencing party in non-stationary settings. We thus explore the dependence of optimal influence allocation on the time horizons of the strategic influencer. We find that on undirected heterogeneous networks, for short time horizons, influence is maximized when targeting low-degree nodes, while for long time horizons influence maximization is achieved when controlling hub nodes. Furthermore, we show that for short and intermediate time scales influence maximization can exploit knowledge of (transient) opinion configurations. More in detail, we find two rules. First, nodes with states differing from the strategic influencer's goal should be targeted. Second, if only few nodes are initially aligned with the strategic influencer, nodes subject to opposing influence should be avoided, but when many nodes are aligned, an optimal influencer should shadow opposing influence.Comment: 22 page

    Farm household risk balancing : implications for policy from an EU perspective

    Get PDF
    Purpose - Building on the risk balancing theory and on recent discussions the appropriateness of using farm income maximization as behavioural assumption, this paper extends the risk balancing framework by accounting for business-household interactions. The purpose of this paper is to theoretically introduce the concept of farm household risk balancing, a theoretical framework in which the farm household sets a constraint on the total household-level risk and balances farm-level and off-farm-level risk. Design/methodology/approach - The paper argues that the risk behaviour of farmers is better understood by considering risk at the household level. Using an analytical framework, equations are derived linking the farm activities, off-farm activities, consumption and business and private liquidity. Findings - The framework shows that a farm household that wants to minimize the risk that total household cash flow falls below consumption needs, may exhibit a wide variety of behavioural responses to changes in the policy and economic environment. Social implications - The framework suggests multiple ways for policy makers and individual farmers to support risk management. Originality/value - Risk management is at the core of the agricultural policy and it is of paramount importance to be able to understand behavioural responses to market and policy instruments. This paper contributes to that by suggesting that the focus of current risk analysis and management studies may be too narrowly focused at the farm level

    Mapping the Curricular Structure and Contents of Network Science Courses

    Full text link
    As network science has matured as an established field of research, there are already a number of courses on this topic developed and offered at various higher education institutions, often at postgraduate levels. In those courses, instructors adopted different approaches with different focus areas and curricular designs. We collected information about 30 existing network science courses from various online sources, and analyzed the contents of their syllabi or course schedules. The topics and their curricular sequences were extracted from the course syllabi/schedules and represented as a directed weighted graph, which we call the topic network. Community detection in the topic network revealed seven topic clusters, which matched reasonably with the concept list previously generated by students and educators through the Network Literacy initiative. The minimum spanning tree of the topic network revealed typical flows of curricular contents, starting with examples of networks, moving onto random networks and small-world networks, then branching off to various subtopics from there. These results illustrate the current state of consensus formation (including variations and disagreements) among the network science community on what should be taught about networks and how, which may also be informative for K--12 education and informal education.Comment: 17 pages, 11 figures, 2 tables; to appear in Cramer, C. et al. (eds.), Network Science in Education -- Tools and Techniques for Transforming Teaching and Learning (Springer, 2017, in press
    corecore