241,917 research outputs found

    Top-down Attention Recurrent VLAD Encoding for Action Recognition in Videos

    Full text link
    Most recent approaches for action recognition from video leverage deep architectures to encode the video clip into a fixed length representation vector that is then used for classification. For this to be successful, the network must be capable of suppressing irrelevant scene background and extract the representation from the most discriminative part of the video. Our contribution builds on the observation that spatio-temporal patterns characterizing actions in videos are highly correlated with objects and their location in the video. We propose Top-down Attention Action VLAD (TA-VLAD), a deep recurrent architecture with built-in spatial attention that performs temporally aggregated VLAD encoding for action recognition from videos. We adopt a top-down approach of attention, by using class specific activation maps obtained from a deep CNN pre-trained for image classification, to weight appearance features before encoding them into a fixed-length video descriptor using Gated Recurrent Units. Our method achieves state of the art recognition accuracy on HMDB51 and UCF101 benchmarks.Comment: Accepted to the 17th International Conference of the Italian Association for Artificial Intelligenc

    NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding

    Full text link
    Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action recognition. The existing depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of large-scale training samples, realistic number of distinct class categories, diversity in camera views, varied environmental conditions, and variety of human subjects. In this work, we introduce a large-scale dataset for RGB+D human action recognition, which is collected from 106 distinct subjects and contains more than 114 thousand video samples and 8 million frames. This dataset contains 120 different action classes including daily, mutual, and health-related activities. We evaluate the performance of a series of existing 3D activity analysis methods on this dataset, and show the advantage of applying deep learning methods for 3D-based human action recognition. Furthermore, we investigate a novel one-shot 3D activity recognition problem on our dataset, and a simple yet effective Action-Part Semantic Relevance-aware (APSR) framework is proposed for this task, which yields promising results for recognition of the novel action classes. We believe the introduction of this large-scale dataset will enable the community to apply, adapt, and develop various data-hungry learning techniques for depth-based and RGB+D-based human activity understanding. [The dataset is available at: http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp]Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    LSTA: Long Short-Term Attention for Egocentric Action Recognition

    Get PDF
    Egocentric activity recognition is one of the most challenging tasks in video analysis. It requires a fine-grained discrimination of small objects and their manipulation. While some methods base on strong supervision and attention mechanisms, they are either annotation consuming or do not take spatio-temporal patterns into account. In this paper we propose LSTA as a mechanism to focus on features from spatial relevant parts while attention is being tracked smoothly across the video sequence. We demonstrate the effectiveness of LSTA on egocentric activity recognition with an end-to-end trainable two-stream architecture, achieving state of the art performance on four standard benchmarks.Comment: Accepted to CVPR 201

    Recurrent Attention Models for Depth-Based Person Identification

    Get PDF
    We present an attention-based model that reasons on human body shape and motion dynamics to identify individuals in the absence of RGB information, hence in the dark. Our approach leverages unique 4D spatio-temporal signatures to address the identification problem across days. Formulated as a reinforcement learning task, our model is based on a combination of convolutional and recurrent neural networks with the goal of identifying small, discriminative regions indicative of human identity. We demonstrate that our model produces state-of-the-art results on several published datasets given only depth images. We further study the robustness of our model towards viewpoint, appearance, and volumetric changes. Finally, we share insights gleaned from interpretable 2D, 3D, and 4D visualizations of our model's spatio-temporal attention.Comment: Computer Vision and Pattern Recognition (CVPR) 201
    • …
    corecore