221 research outputs found

    Relating threshold tolerance graphs to other graph classes

    Get PDF
    A graph G=(V, E) is a threshold tolerance if it is possible to associate weights and tolerances with each node of G so that two nodes are adjacent exactly when the sum of their weights exceeds either one of their tolerances. Threshold tolerance graphs are a special case of the well-known class of tolerance graphs and generalize the class of threshold graphs which are also extensively studied in literature. In this note we relate the threshold tolerance graphs with other important graph classes. In particular we show that threshold tolerance graphs are a proper subclass of co-strongly chordal graphs and strictly include the class of co-interval graphs. To this purpose, we exploit the relation with another graph class, min leaf power graphs (mLPGs)

    On the intersection of tolerance and cocomparability graphs.

    Get PDF
    Tolerance graphs have been extensively studied since their introduction, due to their interesting structure and their numerous applications, as they generalize both interval and permutation graphs in a natural way. It has been conjectured by Golumbic, Monma, and Trotter in 1984 that the intersection of tolerance and cocomparability graphs coincides with bounded tolerance graphs. Since cocomparability graphs can be efficiently recognized, a positive answer to this conjecture in the general case would enable us to efficiently distinguish between tolerance and bounded tolerance graphs, although it is NP-complete to recognize each of these classes of graphs separately. This longstanding conjecture has been proved under some – rather strong – structural assumptions on the input graph; in particular, it has been proved for complements of trees, and later extended to complements of bipartite graphs, and these are the only known results so far. Furthermore, it is known that the intersection of tolerance and cocomparability graphs is contained in the class of trapezoid graphs. Our main result in this article is that the above conjecture is true for every graph G that admits a tolerance representation with exactly one unbounded vertex; note that this assumption concerns only the given tolerance representation R of G, rather than any structural property of G. Moreover, our results imply as a corollary that the conjecture of Golumbic, Monma, and Trotter is true for every graph G = (V,E) that has no three independent vertices a, b, c ∈ V such that N(a) ⊂ N(b) ⊂ N(c), where N(v) denotes the set of neighbors of a vertex v ∈ V ; this is satisfied in particular when G is the complement of a triangle-free graph (which also implies the above-mentioned correctness for complements of bipartite graphs). Our proofs are constructive, in the sense that, given a tolerance representation R of a graph G, we transform R into a bounded tolerance representation R of G. Furthermore, we conjecture that any minimal tolerance graph G that is not a bounded tolerance graph, has a tolerance representation with exactly one unbounded vertex. Our results imply the non-trivial result that, in order to prove the conjecture of Golumbic, Monma, and Trotter, it suffices to prove our conjecture

    Graph theory and tolerance graphs.

    Get PDF
    Graphs are diagrams made up of nodes and edges. The nodes are the points on the graph. The edges are the lines connecting the nodes. These graphs are useful in that they allow for the modeling of real world problems into a format that can be readily solved by computers. Graph theory can be used in fields as diverse as chemistry, transportation, and music. However, graph theory is not being fully utilized because of the level of knowledge required to use it. The first of three goals of this thesis is to make graph theory accessible to a larger audience by developing a graphical application. This application allows a user to create a graph, apply a graph algorithm, and display the results through a graphical user interface. The second goal of this thesis is to implement the ost useful graph algorithms. This includes basic algorithms that have been well researched and can be solved in polynomial time. Advanced algorithms for the class of graphs known as perfect graphs will also be implemented. The third goal is to add to graph theory to make it more practical. A relatively new class of graphs known as tolerance graphs allows for variations that occur in real world problems. The nodes on a tolerance graph correspond to intervals on a real line. Each interval has a tolerance value. Edges are drawn between two nodes if the intersection of the two intervals is greater than the tolerance of either interval. This thesis examines known algorithms for tolerance graphs. There are still some open problems dealing with tolerance graphs. Among them are the problem of recognizing tolerance graphs and converting a known tolerance graph into a tolerance representation. These two problems will be explored within this thesis

    New geometric representations and domination problems on tolerance and multitolerance graphs

    Get PDF
    Tolerance graphs model interval relations in such a way that intervals can tolerate a certain amount of overlap without being in conflict. In one of the most natural generalizations of tolerance graphs with direct applications in the comparison of DNA sequences from different organisms, namely multitolerance graphs, two tolerances are allowed for each interval – one from the left and one from the right side. Several efficient algorithms for optimization problems that are NPhard in general graphs have been designed for tolerance and multitolerance graphs. In spite of this progress, the complexity status of some fundamental algorithmic problems on tolerance and multitolerance graphs, such as the dominating set problem, remained unresolved until now, three decades after the introduction of tolerance graphs. In this article we introduce two new geometric representations for tolerance and multitolerance graphs, given by points and line segments in the plane. Apart from being important on their own, these new representations prove to be a powerful tool for deriving both hardness results and polynomial time algorithms. Using them, we surprisingly prove that the dominating set problem can be solved in polynomial time on tolerance graphs and that it is APX-hard on multitolerance graphs, solving thus a longstanding open problem. This problem is the first one that has been discovered with a different complexity status in these two graph classes. Furthermore we present an algorithm that solves the independent dominating set problem on multitolerance graphs in polynomial time, thus demonstrating the potential of this new representation for further exploitation via sweep line algorithms

    On grounded L-graphs and their relatives

    Get PDF
    We consider the graph class Grounded-L corresponding to graphs that admit an intersection representation by L-shaped curves, where additionally the topmost points of each curve are assumed to belong to a common horizontal line. We prove that Grounded-L graphs admit an equivalent characterisation in terms of vertex ordering with forbidden patterns. We also compare this class to related intersection classes, such as the grounded segment graphs, the monotone L-graphs (a.k.a. max point-tolerance graphs), or the outer-1-string graphs. We give constructions showing that these classes are all distinct and satisfy only trivial or previously known inclusions.Comment: 16 pages, 6 figure

    On the intersection of tolerance and cocomparability graphs.

    Get PDF
    It has been conjectured by Golumbic and Monma in 1984 that the intersection of tolerance and cocomparability graphs coincides with bounded tolerance graphs. Since cocomparability graphs can be efficiently recognized, a positive answer to this conjecture in the general case would enable us to efficiently distinguish between tolerance and bounded tolerance graphs, although it is NP-complete to recognize each of these classes of graphs separately. The conjecture has been proved under some – rather strong – structural assumptions on the input graph; in particular, it has been proved for complements of trees, and later extended to complements of bipartite graphs, and these are the only known results so far. Furthermore, it is known that the intersection of tolerance and cocomparability graphs is contained in the class of trapezoid graphs. In this article we prove that the above conjecture is true for every graph G, whose tolerance representation satisfies a slight assumption; note here that this assumption concerns only the given tolerance representation R of G, rather than any structural property of G. This assumption on the representation is guaranteed by a wide variety of graph classes; for example, our results immediately imply the correctness of the conjecture for complements of triangle-free graphs (which also implies the above-mentioned correctness for complements of bipartite graphs). Our proofs are algorithmic, in the sense that, given a tolerance representation R of a graph G, we describe an algorithm to transform R into a bounded tolerance representation R  ∗  of G. Furthermore, we conjecture that any minimal tolerance graph G that is not a bounded tolerance graph, has a tolerance representation with exactly one unbounded vertex. Our results imply the non-trivial result that, in order to prove the conjecture of Golumbic and Monma, it suffices to prove our conjecture. In addition, there already exists evidence in the literature that our conjecture is true
    • …
    corecore