19,757 research outputs found

    Fine-Grained Object Recognition and Zero-Shot Learning in Remote Sensing Imagery

    Full text link
    Fine-grained object recognition that aims to identify the type of an object among a large number of subcategories is an emerging application with the increasing resolution that exposes new details in image data. Traditional fully supervised algorithms fail to handle this problem where there is low between-class variance and high within-class variance for the classes of interest with small sample sizes. We study an even more extreme scenario named zero-shot learning (ZSL) in which no training example exists for some of the classes. ZSL aims to build a recognition model for new unseen categories by relating them to seen classes that were previously learned. We establish this relation by learning a compatibility function between image features extracted via a convolutional neural network and auxiliary information that describes the semantics of the classes of interest by using training samples from the seen classes. Then, we show how knowledge transfer can be performed for the unseen classes by maximizing this function during inference. We introduce a new data set that contains 40 different types of street trees in 1-ft spatial resolution aerial data, and evaluate the performance of this model with manually annotated attributes, a natural language model, and a scientific taxonomy as auxiliary information. The experiments show that the proposed model achieves 14.3% recognition accuracy for the classes with no training examples, which is significantly better than a random guess accuracy of 6.3% for 16 test classes, and three other ZSL algorithms.Comment: G. Sumbul, R. G. Cinbis, S. Aksoy, "Fine-Grained Object Recognition and Zero-Shot Learning in Remote Sensing Imagery", IEEE Transactions on Geoscience and Remote Sensing (TGRS), in press, 201

    A Framework to Adjust Dependency Measure Estimates for Chance

    Full text link
    Estimating the strength of dependency between two variables is fundamental for exploratory analysis and many other applications in data mining. For example: non-linear dependencies between two continuous variables can be explored with the Maximal Information Coefficient (MIC); and categorical variables that are dependent to the target class are selected using Gini gain in random forests. Nonetheless, because dependency measures are estimated on finite samples, the interpretability of their quantification and the accuracy when ranking dependencies become challenging. Dependency estimates are not equal to 0 when variables are independent, cannot be compared if computed on different sample size, and they are inflated by chance on variables with more categories. In this paper, we propose a framework to adjust dependency measure estimates on finite samples. Our adjustments, which are simple and applicable to any dependency measure, are helpful in improving interpretability when quantifying dependency and in improving accuracy on the task of ranking dependencies. In particular, we demonstrate that our approach enhances the interpretability of MIC when used as a proxy for the amount of noise between variables, and to gain accuracy when ranking variables during the splitting procedure in random forests.Comment: In Proceedings of the 2016 SIAM International Conference on Data Minin

    Studies of Boosted Decision Trees for MiniBooNE Particle Identification

    Full text link
    Boosted decision trees are applied to particle identification in the MiniBooNE experiment operated at Fermi National Accelerator Laboratory (Fermilab) for neutrino oscillations. Numerous attempts are made to tune the boosted decision trees, to compare performance of various boosting algorithms, and to select input variables for optimal performance.Comment: 28 pages, 22 figures, submitted to Nucl. Inst & Meth.

    Automated Classification of Periodic Variable Stars detected by the Wide-field Infrared Survey Explorer

    Get PDF
    We describe a methodology to classify periodic variable stars identified using photometric time-series measurements constructed from the Wide-field Infrared Survey Explorer (WISE) full-mission single-exposure Source Databases. This will assist in the future construction of a WISE Variable Source Database that assigns variables to specific science classes as constrained by the WISE observing cadence with statistically meaningful classification probabilities. We have analyzed the WISE light curves of 8273 variable stars identified in previous optical variability surveys (MACHO, GCVS, and ASAS) and show that Fourier decomposition techniques can be extended into the mid-IR to assist with their classification. Combined with other periodic light-curve features, this sample is then used to train a machine-learned classifier based on the random forest (RF) method. Consistent with previous classification studies of variable stars in general, the RF machine-learned classifier is superior to other methods in terms of accuracy, robustness against outliers, and relative immunity to features that carry little or redundant class information. For the three most common classes identified by WISE: Algols, RR Lyrae, and W Ursae Majoris type variables, we obtain classification efficiencies of 80.7%, 82.7%, and 84.5% respectively using cross-validation analyses, with 95% confidence intervals of approximately +/-2%. These accuracies are achieved at purity (or reliability) levels of 88.5%, 96.2%, and 87.8% respectively, similar to that achieved in previous automated classification studies of periodic variable stars.Comment: 48 pages, 17 figures, 1 table, accepted by A
    corecore