4,467 research outputs found

    Unsupervised Domain Adaptation for 3D Keypoint Estimation via View Consistency

    Full text link
    In this paper, we introduce a novel unsupervised domain adaptation technique for the task of 3D keypoint prediction from a single depth scan or image. Our key idea is to utilize the fact that predictions from different views of the same or similar objects should be consistent with each other. Such view consistency can provide effective regularization for keypoint prediction on unlabeled instances. In addition, we introduce a geometric alignment term to regularize predictions in the target domain. The resulting loss function can be effectively optimized via alternating minimization. We demonstrate the effectiveness of our approach on real datasets and present experimental results showing that our approach is superior to state-of-the-art general-purpose domain adaptation techniques.Comment: ECCV 201

    Is it worth it? Budget-related evaluation metrics for model selection

    Get PDF
    Projects that set out to create a linguistic resource often do so by using a machine learning model that pre-annotates or filters the content that goes through to a human annotator, before going into the final version of the resource. However, available budgets are often limited, and the amount of data that is available exceeds the amount of annotation that can be done. Thus, in order to optimize the benefit from the invested human work, we argue that the decision on which predictive model one should employ depends not only on generalized evaluation metrics, such as accuracy and F-score, but also on the gain metric. The rationale is that, the model with the highest F-score may not necessarily have the best separation and sequencing of predicted classes, thus leading to the investment of more time and/or money on annotating false positives, yielding zero improvement of the linguistic resource. We exemplify our point with a case study, using real data from a task of building a verb-noun idiom dictionary. We show that in our scenario, given the choice of three systems with varying F-scores, the system with the highest F-score does not yield the highest profits. In other words, we show that the cost-benefit trade off can be more favorable if a system with a lower F-score is employed

    Is it worth it? Budget-related evaluation metrics for model selection

    Get PDF
    Creating a linguistic resource is often done by using a machine learning model that filters the content that goes through to a human annotator, before going into the final resource. However, budgets are often limited, and the amount of available data exceeds the amount of affordable annotation. In order to optimize the benefit from the invested human work, we argue that deciding on which model one should employ depends not only on generalized evaluation metrics such as F-score, but also on the gain metric. Because the model with the highest F-score may not necessarily have the best sequencing of predicted classes, this may lead to wasting funds on annotating false positives, yielding zero improvement of the linguistic resource. We exemplify our point with a case study, using real data from a task of building a verb-noun idiom dictionary. We show that, given the choice of three systems with varying F-scores, the system with the highest F-score does not yield the highest profits. In other words, in our case the cost-benefit trade off is more favorable for a system with a lower F-score.Comment: 7 pages, 1 figure, 5 tables, In proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018

    Argumentation Mining in User-Generated Web Discourse

    Full text link
    The goal of argumentation mining, an evolving research field in computational linguistics, is to design methods capable of analyzing people's argumentation. In this article, we go beyond the state of the art in several ways. (i) We deal with actual Web data and take up the challenges given by the variety of registers, multiple domains, and unrestricted noisy user-generated Web discourse. (ii) We bridge the gap between normative argumentation theories and argumentation phenomena encountered in actual data by adapting an argumentation model tested in an extensive annotation study. (iii) We create a new gold standard corpus (90k tokens in 340 documents) and experiment with several machine learning methods to identify argument components. We offer the data, source codes, and annotation guidelines to the community under free licenses. Our findings show that argumentation mining in user-generated Web discourse is a feasible but challenging task.Comment: Cite as: Habernal, I. & Gurevych, I. (2017). Argumentation Mining in User-Generated Web Discourse. Computational Linguistics 43(1), pp. 125-17

    Scaling Egocentric Vision: The EPIC-KITCHENS Dataset

    Get PDF
    First-person vision is gaining interest as it offers a unique viewpoint on people's interaction with objects, their attention, and even intention. However, progress in this challenging domain has been relatively slow due to the lack of sufficiently large datasets. In this paper, we introduce EPIC-KITCHENS, a large-scale egocentric video benchmark recorded by 32 participants in their native kitchen environments. Our videos depict nonscripted daily activities: we simply asked each participant to start recording every time they entered their kitchen. Recording took place in 4 cities (in North America and Europe) by participants belonging to 10 different nationalities, resulting in highly diverse cooking styles. Our dataset features 55 hours of video consisting of 11.5M frames, which we densely labeled for a total of 39.6K action segments and 454.3K object bounding boxes. Our annotation is unique in that we had the participants narrate their own videos (after recording), thus reflecting true intention, and we crowd-sourced ground-truths based on these. We describe our object, action and anticipation challenges, and evaluate several baselines over two test splits, seen and unseen kitchens. Dataset and Project page: http://epic-kitchens.github.ioComment: European Conference on Computer Vision (ECCV) 2018 Dataset and Project page: http://epic-kitchens.github.i
    corecore