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Abstract

EMERGING EVALUATION PARADIGMS

IN NATURAL LANGUAGE UNDERSTANDING:
A CASE STUDY IN MACHINE READING COMPREHENSION

Viktor Schlegel
A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy, 2021

Question Answering (QA) over unstructured textual data, also referred to as Machine
Reading Comprehension (MRC), is advancing at an unprecedented rate. State-of-the-
art language models are reported to outperform human-established baselines on mul-
tiple benchmarks aimed at evaluating Natural Language Understanding (NLU). Re-
cent work, however, has questioned their seemingly superb performance. Specifically,
training and evaluation data may contain exploitable superficial lexical cues which
neural networks can learn to exploit in order achieve high performance on those bench-
marks. Evaluating under the conventional machine learning assumptions, by splitting
a dataset randomly into a training and evaluation set, conceals these issues.

This gives opportunity to propose novel evaluation methodologies for MRC. Re-
searchers may investigate the quality training and evaluation data of MRC data, pro-
pose evaluation methodologies that reveal the dependence of superficial cues or im-
prove the performance of models when optimised on data that could contain these
cues.

In this thesis we contribute to this developing research field. The specific contribu-
tions are outlined as follows:

• We carry out a literature survey, systematically categorising methods that inves-
tigate NLU training data, evaluation methodologies and models. We find that in
MRC as a testbed for NLU, there is a lack of investigations with regard to the
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capability to process linguistic phenomena.

• We propose a qualitative evaluation framework for MRC gold standards with
regards to linguistic and reasoning requirements present in gold standard data,
as well as the data quality. We find that state-of-the-art MRC gold standards
lack challenging linguistic phenomena and reasoning forms, such as words that
alter the semantics of the sentences they appear in. Furthermore, we find that the
factual correctness of evaluation data can be influenced by the data generation
method.

• We devise a methodology that evaluates a capability of interest by observing
models’ behaviour in reaction to controlled changes in input data. Alongside
this, we propose a method to generate synthetic benchmarks. We evaluate its
quality and diversity through comparison with existing corpora. We find our
method to produce MRC data that are fit for the intended purpose.

• We apply this methodology to conduct a large-scale empirical study to investi-
gate the capability of state-of-the-art MRC to process semantic-altering modifi-
cations (SAM) (such as almost or nearly) in input data. SAM are interesting in
that they can indicate a model’s dependence on simplifying cues, because they
change the expected answer while preserving a similar lexical surface form. We
find that multiple state-of-the-art MRC architectures optimised on various popu-
lar MRC datasets fail to process SAM correctly. One of the possible reasons for
this, that we have identified, is the lack of relevant training examples.

This thesis contributes towards gaining an empirically grounded understanding of what
the current state-of-the-art MRC models are learning and where they still fail, which—
in turn—gives specific proposals for building the next iteration of datasets and model
architectures and therefore advance the research in MRC.
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Chapter 1

Introduction

1.1 Motivation

One of the long-standing endeavours of Artificial Intelligence (AI) research is to build
systems that are capable of processing text at human capacity. A usual approach to
measuring the reading comprehension capabilities of humans, e.g. in language learn-
ing, is to ask questions about a text piece they have read (Marks and Noll 1967). Sim-
ilarly, in order to evaluate the natural language understanding and reading comprehen-
sion capability of an AI system, the task of Machine Reading Comprehension (MRC)
is defined as finding an answer to a question that was posed over a passage of text. It is
also referred to as Question Answering (QA) (over text) in literature (Rajpurkar et al.
2016)*.

With the first approaches dating back to the 1970s (Lehnert 1977), the task was
largely neglected during the 1980s and 1990s, to be re-discovered by Hirschman et al.
(1999) later on. The recent success of deep learning was noticeable in MRC as well
(Chen, Bolton, and Manning 2016), with neural networks superseding and outperform-
ing approaches relying on hand-crafted features (Wang et al. 2015) and rules (Riloff
and Thelen 2000). To further spur the research on deep-learning based machine read-
ing comprehension, Rajpurkar et al. (2016) proposed SQUAD, the first large crowd-
sourced MRC dataset that featured enough examples to optimise neural models.

In the present day, MRC is a well established and actively researched task within
the NLP community. From a research point of view, it is worthwhile pursuing, as its

*Note that the term QA is overloaded, it can also refer to the Natural Language Processing (NLP)
application Question Answering, which is concerned with querying data in natural language, as opposed
to measuring the reading comprehension capabilities. To avoid ambiguity, over the course of this thesis
we will talk about MRC.

15



16 CHAPTER 1. INTRODUCTION

formulation allows us to investigate natural language understanding capabilities that
are hard to evaluate in other NLP tasks. Examples include keeping track of a conver-
sation (Choi et al. 2018), integrating information from multiple sources (Yang et al.
2018) and tracing the changes to entities mentioned in text (Dalvi et al. 2018; Weston
et al. 2015). In terms of real-world applications, MRC systems have the potential to be
employed as an end-point of information retrieval pipelines, to extract answers from
search engine results (Dunn et al. 2017), in chat bots and dialogue systems (Choi et al.
2018) or to assist domain-specific knowledge discovery and exploration in a format
suitable for lay people (Möller et al. 2020).

The rapid advancement of neural-network based AI systems in general, and for
MRC specifically, dictates a requirement to develop approaches for fine-grained inter-
pretation of their behaviour as, due to their black-box nature, neural networks are hard
to predict and understand (Lipton 2016). Black-box here means that the operations
performed between input and output are not interpretable, as opposed to e.g. a tradi-
tional algorithm, which consists of a sequence of instructions that allow for explicit
tracing of the algorithm’s state and the transformations performed on the input in order
to derive the output†. This makes hard to draw conclusions about the behaviour of
neural network based systems, i.e. in which situations they succeed and in which sit-
uations they fail. Being able to understand the reasons for certain predictions of these
systems is important, however, as on the one hand, it will help potential end-users to
build trust towards neural-network driven solutions. On the other hand, better inter-
pretation methodology allows researchers to identify limitations of current approaches
which is a necessary requirement for scientific progress.

One way of estimating the behaviour of black-box systems is black-box testing, i.e.
observing the predicted outputs on a series of strategically chosen inputs. For the task
of reading comprehension these can be inputs that require a specific comprehension
capability, such as understanding numbers and counting, in order to predict the correct
output. However, care needs to be taken when performing this type of evaluation, as
data-driven approaches tend to exploit simple associative patterns between inputs and
outputs that exist in data and can be a spurious dataset artefact rather than being in-
dicative of evaluated capability (Schlegel, Nenadic, and Batista-Navarro 2020a). This
further weakens the strength of the claims that have been made so far concerning the
reading comprehension of data-driven systems.

†Predicting with neural networks, of course, follows an algorithm as well. The difference is that
the inputs are high-dimensional vectors and operations involve non-linear algebraic operations on those
vectors, which are not human-interpretable.



1.2. BACKGROUND 17

In this thesis, we investigate emerging paradigms that aim to better interpret the
behaviour of state-of-the-art neural network based MRC systems, and harness them
against the exploitation of spurious patterns. Specifically, this thesis aims to devise
novel manual and automated evaluation methodologies for MRC data and models.

1.2 Background

1.2.1 Problem definition

We define the task of machine reading comprehension, the target application of the
proposed methodology, as follows: Given a paragraph P that consists of tokens (words)
p1, . . . , p|P| and a question Q that consists of tokens q1 . . .q|Q|, the goal is to retrieve an
answer A with tokens a1 . . .a|A| that best answers the question given the paragraph. A is
commonly constrained to be one of the following cases (Liu et al. 2019c), exemplified
in Figure 1.1:

• Multiple choice, where the goal is to predict A from a given set of choices A .

• Cloze-style, where S is a sentence, and A and Q are obtained by removing a
sequence of words such that Q = S−A. The task is to fill in the resulting gap in
Q with the expected answer A to form S.

• Span, where A is a continuous subsequence of tokens from the paragraph (A ⊆
P). Flavours include multiple spans as the correct answer or A⊆ Q.

• Free form, where A is an unconstrained natural language string.

Thus, an MRC example is the triple (Q,P,A) consisting of the question, the cor-
responding passage and answer. MRC systems are given question and passage and
return a predicted answer Â.

How well a system performs reading comprehension is typically evaluated by com-
paring the predicted answers against the ground truth answers of a gold standard
D = {(Q,P,A)}i∈{1...|D|}. Given a gold standard, this procedure allows to compar-
atively analyse the performance of different systems and also compare it to that of
humans. The metrics used depend on the task formulation: the usual metric for multi-
ple choice and cloze-style MRC is Accuracy – with Âi being the prediction of a system
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Passage
The Pats win the AFC East for the 9th straight year. The Patriots trailed 24-16 at
the end of the third quarter. They scored on a 46-yard field goal with 4:00 left in
the game to pull within 24-19. Then, with 56 seconds remaining, Dion Lewis scored
on an 8-yard run and the Patriots added a two-point conversion to go ahead 27-
24. [. . . ] The game ended on a Roethlisberger interception. Steelers wide receiver
Antonio Brown left in the first half with a bruised calf.
Multiple choice
Question: Who was injured during the match?
Answer: (a) Rob Gronkowski (b) Ben Roethlisberger (c) Dion Lewis (d) Antonio
Brown
Cloze-style
Question: The Patriots champion the cup for ? consecutive seasons.
Answer: 9
Span
Question: What was the final score of the game?
Answer: 27-24
Free form
Question: How many points ahead were the Patriots by the end of the game?
Answer: 3

Figure 1.1: Examples of different formulations of the MRC task.

given Qi,Pi and Â = Âi∈{1∈..|D|} the set of all predictions, it is defined as

Acc(A ,D) =
|{Âi = Ai | i ∈ 1 . . . |D|}|

|D|
,

i.e. the ratio of correctly predicted instances. In the span extraction setting, this metric
is referred to as Exact Match (EM), because it reflects the ratio of those spans that were
predicted exactly. Because this metric might seem too strict—for example, a prediction
that differs to the ground truth answer by only omitting an article would be not counted
as correct under the exact match measure—a more relaxed metric, the token-level F1

score is used alongside. For a single instance, the token F1 score is defined as follows:

tF1(Â,A) =
|Â∩A|

|Â∩A|+ 1
2(|Â\ (Â∩A)|+ |A\ Â|)

‡

or, in other words, the harmonic mean between

‡Â∩A here denotes the (sequence of) tokens that are both in Â and A.
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• the proportion of tokens in prediction and ground truth to the number of tokens
of the prediction (precision)

• the proportion of tokens in prediction and ground truth to the number of tokens
of the ground truth answer (recall)

This metric gradually discounts for ground truth tokens that are missing in the predic-
tion and erroneously predicted tokens not present in ground truth, as opposed to the
exact match measure that would count the prediction as invalid. The overall perfor-
mance is then established by averaging the per-instance F1 score:

F1(A ,D) =
∑
|D|
i=1 tF1(Âi,Ai)

|D|

For evaluating MRC where the answer is a free form string, metrics for natural
language generation such as BLEU (Papineni et al. 2001), Rouge (Lin 2004) and their
derivatives are used.

It is worth noting that among different MRC task formulations, multiple choice and
span extraction formulations emerge as the most popular in the literature. The reason
for this is that they allow a sufficiently flexible task formulation as opposed to fill-in-
the-gap queries while providing a means for reliable automated evaluation, avoiding
the inherent difficulties associated with automated methods for text generation evalua-
tion (Gatt and Krahmer 2018).

As mentioned before, in line with recent developments in other NLP (and in gen-
eral, most of AI) areas, approaches that rely on expert knowledge, e.g. in the form of
manually engineered features and rules, have been increasingly replaced by data-driven
general-purpose neural architectures that require little to no explicit prior knowledge.
Contextualised language models (Devlin et al. 2019) utilising the transformer (Vaswani
et al. 2017) architecture has emerged as a de-facto state-of-the-art solution for many
NLP tasks, with MRC being no exception. The discussion of technical details is out
of scope of this introduction, nor is it particularly important for the remainder of the
thesis. Instead we give a high-level overview below.

Progress associated with neural NLP approaches has largely been determined by
the quality of the underlying (learned) distributed representations of the textual data.
The idea of these representations follows the distributional hypothesis: words that
appear in similar contexts have similar meaning. In practice, this is achieved by em-
bedding words in a high-dimensional vector space, minimising the distance between
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similar words while maximising the distance between non-similar ones, as observed
by co-occurrence patterns in large textual corpora. Importantly, this optimisation can
be carried out at scale and in an unsupervised manner. Utilising these pre-trained em-
beddings improved the performance of many down-stream NLP tasks (Mikolov et al.
2013; Pennington, Socher, and Manning 2014). These learned representations provide
a static mapping between words and vectors, in that they would assign the same high-
dimensional vector to words with the same lexical surface form. For example, consider
the word “bank”: it will have the same embedding in the sentences “I walked by the

river bank.” and “I bring my money to the bank.”, despite the word “bank” having a
different meaning (word sense).

Moving past this static mapping, contextualised word representations were pro-
posed, further improving the performance of many NLP tasks. Peters et al. (2018)
optimised a recurrent neural network on the task of forward and backward language
modelling, i.e. predicting a token given a sequence of previous and following tokens.
Similar to the case with word vectors, the language model optimisation objective is
self-supervised, hence training can be performed on a large corpus without the need
for (human) labelled data. By utilising the hidden vectors of the recurrent networks
as embeddings, they were again able to improve upon the state of the art on many
NLP tasks. Following a similar principle, Devlin et al. (2019) utilised the transformer
(Vaswani et al. 2017) architecture that relies on multiple layers of self-attention (a
learned weight matrix denoting the relevance of other input tokens relative to a given
token, for all tokens) rather than recurrence, which allows to utilise the massive paral-
lelism as provided by modern hardware (GPUs) more efficiently. Similar to a language
model, the transformer is pre-trained on a large corpus with the self-supervised objec-
tive of predicting a randomly masked span in a sequence of tokens.

The outputs of the optimised large model serve as an input to a task-specific net-
work, that—together with the weights of the transformer—is fine-tuned on a task-
specific labelled dataset in the usual supervised manner for deep learning: by optimis-
ing the weights of the network via gradient descent and backpropagation1. Transformer
architectures have been intensively studied: it has been shown that training larger mod-
els for longer on ever bigger corpora further pushes the state-of-the-art performance on
many NLP tasks, even consistently outperforming baselines established by humans on
some of them (Liu et al. 2019d; Raffel et al. 2019; Lan et al. 2020).

1For span prediction MRC, which this thesis is focusing on for the most part, the task-specific
network is a simple linear layer that is optimised to predict the start and end indices of the answer span.
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An important aspect of these representations is that despite (or perhaps as a con-
sequence of) their expressiveness and their positive impact on the progress in NLP
research, they remain abstract, i.e. they do not bear meaning that is intuitively acces-
sible to humans, as opposed to symbolic representations, such as syntax trees, words
or ontologies.

MRC datasets for the task-specific fine-tuning and evaluation are usually gathered
using crowd-sourcing techniques where crowd-workers are given a paragraph and for-
mulate questions and answers referring to that paragraph. Scaling up the process yields
enough data (typically around 100k examples), satisfying the requirement to optimise
neural networks. Evaluation of the optimised model usually follows the “indepen-
dant, identically distributed” (i.i.d.) assumption typical for machine learning research,
where evaluation data is assumed to be independent and stem from the same genera-
tive process as the training data. To that end, the dataset is typically split randomly into
training, development and testing subsets, and performance is established on the test-
ing subset after optimising a model on the training set and selecting hyper-parameters
based on the results of the development set. Popular (open-domain) MRC datasets
are the earlier mentioned SQuAD dataset (Rajpurkar et al. 2016; Rajpurkar, Jia, and
Liang 2018), NewsQA (Trischler et al. 2017) that features questions over news articles,
HotpotQA (Yang et al. 2018) and WikiHop (Welbl, Stenetorp, and Riedel 2018) that
require synthesis of information from different documents, DROP (Dua et al. 2019b)
that requires to perform simple mathematical operations and SearchQA (Dunn et al.
2017) or TriviaQA (Joshi et al. 2017) as examples of datasets that require reading
comprehension of search engine results. Many more MRC datasets are discussed in
relevant literature surveys, e.g. by Liu et al. (2019c).

1.3 Problem statement

Here, we present three problems associated with state-of-the-art approaches to MRC
as described above, which in conjunction motivate the requirement to devise novel
methodologies to evaluate natural language understanding capabilities of machines.

Non-interpretable behaviour Unlike other algorithms, such as those based on sym-
bolic rules, e.g. decision trees, or human-interpretable features, it is not directly pos-
sible to predict the behaviour of a neural model (the what) or to explain it (the why)
by looking at the performed computations or the optimisation algorithm (the how).
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Passage:
The stadium went wild as Hazel Pelletier was withdrawn in the 25th minute with her
arm in a sling following a challenge from Cornelia Harper. Then, Helen Capetillo,
a player of Arctic Monkeys, shot in a goal from 28 metres away after her teammate
→ Pamela Battle’s soft clearance. [...]
Question: Who assisted the goal after the first foul?
Answer: Pamela Battle

Figure 1.2: Constructed example of a dataset-specific artefact that cues the expected
answer.

Neural networks are transparent to input data (e.g. the same algorithm can be used to
classify text or detect cats in images); the properties of the resulting models are largely
determined by the data they are optimised on. This is not necessary a problem in itself:
assuming there is access to data that is fully representative of a well-defined task and a
model that solves this task perfectly, one might argue that understanding its behaviour
is unnecessary given the reliability on its performance. Consider chess as an example:
predicting the next move of a chess engine or understanding the reason for that move is
secondary if the task is to consistently beat human players, as the reasonable expecta-
tion is that the engine will win in the end (Silver et al. 2018). This is, however, a strong
assumption for a task as complex as MRC which does not appear to hold in general, as
evidenced by the rather moderate generalisation performance of models when evalu-
ated on data that stems from a different generative process, i.e. a different dataset (Dua
et al. 2019a; Talmor and Berant 2019; Fisch et al. 2019). In this scenario, predicting or
explaining when a model will generalise well is desirable but not possible by looking
at the algorithms alone.

Missing fine-grained labels Furthermore, using existing annotated training and eval-
uation data to understand model behaviour proves challenging, because—apart from
one notable exception (Rogers et al. 2020)—MRC data rarely contains annotations that
describe the challenges associated with solving them, such as required reasoning capa-
bilities or linguistic phenomena that needs to be processed correctly. These annotations
are expensive to collect, as they typically require expert knowledge.

Sampling bias Finally, even if such data existed, recent research on “dataset biases”,
a form of sampling bias, shows that evaluating data-driven models under the traditional
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i.i.d. assumption might not be suitable for establishing model performance and inves-
tigating their behaviour and acquired capabilities. For example, consider a dataset that
consists of examples such as the one shown in Figure 1.2: it becomes immediately
evident that the answer to the question is cued by the → token. A model exposed
to examples like those during training would not be incentivised to process question
and passage and would quickly learn to predict the span following the cue. Following
the traditional evaluation methodology of splitting the dataset into training and eval-
uation subsets would not reveal this problem, because the same cue is contained in
both training and evaluation data; hence the model would achieve high performance
solely relying on the simplifying assumption inferred from training data, namely that
the answer is preceded by a specific token. While this example is obvious and explic-
itly constructed to illustrate the point, datasets have been shown to contain these cues,
albeit in a more subtle form, and models have been shown to learn to exploit them, cir-
cumventing reading comprehension capabilities that are potentially required to answer
a question. We will discuss these cues and dataset biases in more depth in Chapter 2.

The problems outlined above constitute the following fact: There is limited under-

standing of the specific reading comprehension and natural language understanding

capabilities of state-of-the-art MRC. This knowledge, however, is important for at least
the following two reasons:

(a) Given that the task of MRC is far from being solved, a fine-grained understanding
of what state-of-the-art MRC excels at and where it still struggles, helps to un-
derstand its strengths and, more importantly, limitations. The limitations, in turn,
open new research questions and provide targeted suggestions for future research.

(b) In cases where the training data of an MRC—or in a broader sense any AI— sys-
tem is not a perfect representation of the application scenario, e.g. when they are
employed to assist humans in their tasks, knowing the strengths and weaknesses
of the system provides additional context that can help to decide whether specific
predictions made by the system can be trusted.

Better and more fine-grained evaluation methodologies, the core topic of this thesis,
allow to improve this understanding.
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1.4 Research Questions and Objectives

The problem statement above translates in the following research questions that we
pursue in this thesis:

RQ1. What methodologies have been proposed to evaluate data-driven natural lan-
guage understanding, inference and comprehension?
Investigating this question allows us to identify suitable evaluation methodolo-
gies and summarise and categorise the findings of their applications. This, in
turn, enables us to identify challenges and open questions in this research area.

RQ2. What are the linguistic and reasoning challenges associated with state-of-the
art MRC gold standards and how well are these challenges evaluated?
Answers to this question give a starting point to gain fine-grained understand-
ing of what is known to be evaluated by the state-of-the-art MRC standards,
and—more importantly—what is not. This allows us to formulate hypotheses
about those phenomena where MRC succeeds or fails, and those for which the
performance of MRC is unknown due to lack of their presence in evaluation
data.

RQ3. How well does MRC perform on phenomena that are absent in state-of-the-art
evaluation data?
Finally, this provides evidence towards and initiaties discussions about the per-
formance of MRC on those phenomena that are not evaluated, including possible
reasons for obtaining and improving this performance.

To investigate these research questions, we devise the following research objec-
tives:

• In order to answer RQ1, the objective is to survey the related literature that con-
cerns evaluating natural language understanding, comprehension and inference,
categorising approaches and findings.

• For RQ2, the objective is to devise a methodology to investigate the linguistic
and reasoning capabilities that are evaluated by MRC gold-standard data, apply
it to a representative sample of MRC evaluation data and identify features that
are under-represented.
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• For the last research question, RQ3, the objective is to devise an evaluation
methodology for a subset of phenomena and demonstrate its usefulness by eval-
uating the performance of state-of-the-art MRC on a representative sample of
those under-represented features identified earlier.

Investigating these research questions and pursuing the research objectives con-
tribute directly towards a better understanding of the strengths and weaknesses of state-
of-the-art MRC, the acquired capabilities and the linguistic phenomena that are pro-
cessed correctly, while providing suggestions for future research on those capabilities
and phenomena not acquired and processed correctly, as of yet.

1.5 Contributions

In terms of scientific contributions, the research undertaken has led to the following:

• A literature survey and categorisation of weaknesses in data-driven approaches
to tasks that require natural language understanding and inference. This includes
a taxonomy of methods that detect those weaknesses in data and trained models
and alleviate them, and a collection of resources used to evaluate the behaviour
of data-driven models with regard to various linguistic phenomena and reasoning
dimensions of interest. This survey is presented in Chapter 2 and a manuscript
is submitted to the Natural Language Engineering journal. The thesis author de-
signed and carried out the survey and wrote the manuscript; the last two authors
gave helpful suggestions and revised the manuscript.

• A qualitative framework for fine-grained qualitative evaluation of gold standard
data with regard to present linguistic phenomena, required reasoning and back-
ground knowledge and factual correctness of the data. This framework was ap-
plied to perform a Qualitative evaluation of six state-of-the-art MRC gold stan-
dards. The investigation yielded the lack of challenging examples, as evidenced
by the lack of various linguistic phenomena and the non-evaluation of differ-
ent reasoning capabilities. This work presented in Chapter 3 was published in
proceedings of the Language Resources Evaluation Conference (LREC 2020)
(Schlegel et al. 2020). The thesis author designed and led the work, the second
author validated the annotation and gave helpful comments, the last authors gave
suggestions and helped with manuscript revision.
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Chapter 1:

- establishes pre-requisites

- defines problem statement

- defines research agenda

Chapter 3:

- investigates evaluation data

- identifies weaknesses

Chapter 4:

- develops evaluation methodology

- evaluates state-of-the-art models

Chapter 6:

- revisits objectives

- highlights contributions

- proposes follow-up work

Chapter 2:

- maps research area
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- Discusses findings
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initiate
discussion

inform
follow-up work

Figure 1.3: Thesis overview. Orange labelled arrows inform future chapters based on
literature review and identified research gaps, while blue labelled arrows inform future
chapters based on findings of this thesis.

• Introduction and investigation of Semantics Altering Modifications (SAM) as a
collection of challenging linguistic phenomena that alter the semantics of sen-
tences while preserving a similar lexical form and are largely absent in existing
gold-standard data. A methodology was proposed to automatically generate syn-
thetic corpora featuring SAM examples and to evaluate the capability of MRC
systems to correctly process these, regardless of (potentially biased) training
data. Evaluating state-of-the-art MRC approaches under the proposed methodol-
ogy resulted in the insight that state-of-the-art MRC struggles with SAM exam-
ples, which can be attributed to the lack of challenging examples in training data.
This work is described in Chapter 4 and has been published in proceedings of and
presented at the AAAI 2021 conference (Schlegel, Nenadic, and Batista-Navarro
2020b) and submitted for review at the CoNLL 2021 conference. The thesis au-
thor led design, implementation and evaluation, and wrote the manuscript; the
last two authors gave helpful suggestions and revised the manuscript.

1.6 Thesis Outline

The remainder of the thesis is organised as follows, visualised in Figure 1.3:

In Chapter 2 we outline the general research area by reviewing the related literature.
We survey and categorise methods that have been proposed to overcome the difficulties
associated with the traditional evaluation approaches that measure performance on a
held-out portion of data. The goal of these methods is to evaluate Natural Language
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Understanding (NLU) capabilities of state-of-the-art NLU approaches by investigating
data used for training and evaluation, and by closely observing their performance on
various linguistic phenomena and reasoning capabilities of interest. We synthesise the
findings, identify research trends and open research questions that are addressed in the
following chapters.

In Chapter 3 we address one of the open research questions by proposing an an-
notation framework for qualitative analysis of MRC evaluation data. The framework
took into account required background knowledge and reasoning capabilities, factual
correctness of the expected answers and the presence of various linguistic phenomena
in the passages. Applying this enables deeper understanding of the capabilities that are
required in order to obtain high performance on a given MRC gold standard. By means
of this framework we investigate a random sample of state-of-the-art MRC gold stan-
dards and find that the factual correctness of the data is debatable and features such as
SAM that are suitable to evaluate reading comprehension beyond lexical matching are
missing. To further illustrate the point, we learn to predict sentences that contain the
correct answers based on five lexical overlap features, demonstrating that this simple
approach is surprisingly efficient for some of the investigated datasets.

Having identified the need for factually correct and challenging reading compre-
hension data, in Chapter 4 we devise a methodology to evaluate one necessary aspect
of reading comprehension: the capability to distinguish between and correctly process
examples that are lexically similar yet semantically different. We introduce Semantic
Altering Modifications (SAM), a group of linguistic phenomena that modify the se-
mantics of a sentence while keeping a similar lexical form and present a methodology
to automatically construct corpora featuring original and semantically modified exam-
ples. These phenomena were shown not to be appropriately evaluated in the previous
chapter. We further discuss a way to evaluate the capability of an optimised MRC
model to process these examples regardless of its architecture or training data it was
trained upon. In a comprehensive evaluation we find that state-of-the-art (extractive)
MRC struggles to perform on semantically altered data.

In Chapter 5 we discuss the potential to generalise the proposed methodology to
different data, phenomena and tasks as well as their limitations and scaling poten-
tial. Finally, in Chapter 6 we summarise our findings and contributions, discuss new
research questions that arose out of the conducted research and propose possible direc-
tions for future work.



Chapter 2

A survey of methods for revealing and
overcoming weaknesses of data-driven
Natural Language Understanding1

Abstract

Recent years have seen a growing number of publications that analyse Nat-

ural Language Understanding (NLU) datasets for superficial cues, whether they

undermine the complexity of the tasks underlying those datasets and how they

impact those models that are optimised and evaluated on this data. This struc-

tured survey provides an overview of the evolving research area by categorising

reported weaknesses in models and datasets and the methods proposed to reveal

and alleviate those weaknesses for the English language. We summarise and dis-

cuss the findings and conclude with a set of recommendations for possible future

research directions. The findings can be a useful resource for researchers who

propose new datasets to assess the suitability and quality of their data to eval-

uate various phenomena of interest, as well as those who propose novel NLU

approaches, to further understand the implications of their improvements with

respect to their model’s acquired capabilities.

1This Chapter follows the manuscript of the journal paper “A survey of methods for revealing and
overcoming weaknesses of data-driven Natural Language Understanding”, an earlier version is available
online as pre-print (Schlegel, Nenadic, and Batista-Navarro 2020a).

28
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2.1 Introduction

Research in areas that require reasoning over and understanding unstructured, natural
language text, is advancing at an unprecedented rate. Novel neural architectures, in
particular the transformer (Vaswani et al. 2017) enable efficient unsupervised training
on large corpora to obtain expressive contextualised word and sentence representations
as a basis for a multitude of downstream NLP tasks (Devlin et al. 2019). They are fur-
ther fine-tuned on task-specific, large-scale datasets (Bowman et al. 2015; Rajpurkar
et al. 2016; Williams, Nangia, and Bowman 2018), which provide sufficient examples
to optimise large neural models that are capable of outperforming human-established
baselines on multiple NLU benchmarks (Raffel et al. 2019; Lan et al. 2020). This
seemingly superb performance is used as a justification to accredit those models with
various natural language understanding (NLU) capabilities, such as numeric reason-
ing (Dua et al. 2019b), understanding the temporality of events (Zhou et al. 2019) or
integrating information from multiple sources (Yang et al. 2018).

Recent work, however, casts doubts on the capabilities obtained by models opti-
mised on these data. Specifically, they may contain exploitable superficial cues. For
example the most frequent answer to questions of the type “How many...” is “2”

in a popular numeric reasoning dataset (Gardner et al. 2020) or the occurrence of the
word “no” is correlated with non-entailment in Recognising Textual Entailment (RTE)
datasets (Gururangan et al. 2018). Models are evaluated following the usual machine
learning protocol, where a random subset of the dataset is withheld for evaluation un-
der a performance metric. Because the subset is drawn randomly, these correlations
exist in the evaluation data as well and models that learn to rely on them obtain a high
score. While exploiting correlations is in itself not a problem, it becomes an issue when
they are spurious, i.e., they are artefacts of the collected data rather than representa-
tive of the underlying task. As an example, always answering “2” to every question
that starts with “How many...” is evidently not representative of the task of numeric
reasoning.

A number of publications identify weaknesses of training and evaluation data, and
whether optimised models inherit them. Meanwhile, others design novel evaluation
methodologies that are less prone to the limitations discussed above, and therefore
establish more realistic estimates of various NLU capabilities of state-of-the-art mod-
els. Yet others propose improved model optimisation practices which aim to ignore
“flaws” in training data. The work by McCoy, Pavlick, and Linzen (2019) serves as an
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example for the coherence of these research directions: first they show that in crowd-
sourced RTE datasets, specific syntactic constructs are correlated with an expected
class. They show that optimised models rely on this correlation, by evaluating them
on valid counter-examples where this correlation does not hold. Later, they show that
increasing the syntactic diversity of training data helps to alleviate these limitations
(Min et al. 2020).

In this paper, we present a structured survey of this growing body of literature.
We survey 121 papers for methods that reveal and overcome weaknesses in data and
models, and categorise them accordingly. We draw connections between different cat-
egories, report the main findings, discuss arising trends and cross-cutting themes and
outline open research questions and possible future directions. Specifically, we aim to
answer the following questions:

(1) Which NLU tasks and corresponding datasets have been investigated for weak-
nesses?

(2) Which types of weaknesses have been reported in models and their training and
evaluation data?

(3) What types of methods have been proposed to detect and quantify those weak-
nesses, and measure their impact on model performance, and what methods have
been proposed to overcome them?

(4) How have the proposed methods impacted the creation and publication of novel
datasets?

The paper is organised as follows: we first describe the data collection methodol-
ogy and describe the collected literature body. We then synthesise the weaknesses that
have been identified in this body and categorise the methods used to reveal those. We
highlight the impact of those methods on the creation of new resources and conclude
with a discussion of open research questions as well as possible future research direc-
tions for evaluating and improving the natural language understanding capabilities of
NLP models.

2.2 Methodology

To answer the first three questions we collect a literature body using the “snowballing”
technique. Specifically, we initialise the set of surveyed papers with Tsuchiya (2018),



2.2. METHODOLOGY 31

Gururangan et al. (2018), Poliak et al. (2018) and Jia and Liang (2017), because their
impact helped to motivate further studies and shape the research field. For each paper
in the set we follow its citations and any work that has cited it according to Google
Scholar. We include papers that describe methods and/or their applications to report
any of: (1) qualitative and quantitative investigation of flaws in training and/or test data
and the impact on models optimised/evaluated thereon; (2) systematic issues with task
formulations and/or data collection methods; (3) analysis of specific linguistic and
reasoning phenomena in data and/or models’ performance on them; or (4) proposed
improvements in order to overcome data-specific or model-specific issues, related to
the phenomena and flaws described above. We exclude a paper if its target task is
not concerning natural language understanding, was published before the year 2014 or
the language of the investigated data is not English. We set 2014 as lower boundary,
because it precedes the publication of most large-scale crowd-sourced datasets that
require natural language understanding.

With this approach we obtain a total of 121 papers (as of 17th October 2020) from
the years 2014-2017 (8), 2018 (18), 2019 (42) and 2020 (53). Almost two thirds (76) of
the papers were published in venues hosted by the the Association for Computational
Linguistics. The remaining papers were published in other venues (eight in AAAI,
four in LREC, three in ICLR, two in ICML and COLING respectively, five in other
venues) or are available as an arXiv preprint (21). The papers were examined by the
first author; for each paper the target task and dataset(s), the method applied and the
result of the application was extracted and categorised.

To answer the fourth question regarding the impact on the construction of new
datasets, we selected those publications introducing any of the datasets that were men-
tioned by at least one paper in the pool of surveyed papers, and extended that collection
by additional state-of-the-art NLU dataset resource papers (for detailed inclusion and
exclusion criteria, see Appendix A). This approach yielded a corpus of 91 papers that
introduce 95 distinct datasets. For those papers, we examine whether any of the pre-
viously collected methods were applied to report spurious correlations or whether the
dataset was adversarially pruned against some model.

Although related, we deliberately do not include work that introduces adversarial
attacks on NLP systems or discusses their fairness, as these are out of scope of this
survey. For an overview thereof, we refer the interested reader to respective surveys
conducted by Zhang et al. (2019c) or Xu et al. (2019) for the former, and by Mehrabi
et al. (2019) for the latter.
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Figure 2.1: Bar chart with RTE, MRC and other datasets that were investigated by at
least three surveyed papers. Datasets investigated once or twice are summarised with
“Multiple”. Full statistics can be observed in the Appendix.

2.3 Investigated Tasks and Datasets

We report the tasks and the corresponding datasets that we have investigated. We
supply a full list of these investigated datasets and the type(s) of method(s) applied in
Appendix B. Figure 2.1 depicts all investigated datasets in a word cloud.

Almost half of the surveyed papers (57) are focussed on the Recognising Textual

Entailment (RTE) task, where the goal is to decide, for a pair of natural language
sentences (premise and hypothesis), whether given the premise the hypothesis is true
(Entailment), certainly false (Contradiction), or whether the hypothesis might be true,
but there is not enough information to determine that (Neutral) (Dagan et al. 2013).

Many of the papers analyse the MRC task (50 papers), which concerns finding
the correct answer to a question over a passage of text. Note that the tasks are related:
answering a question can be framed as finding an answer that is entailed by the question
and the provided context (Demszky, Guu, and Liang 2018). Inversely, determining
whether a hypothesis is true given a premise can be framed as question answering.

Other tasks (eight papers) involve finding the most plausible cause or effect for
a short prompt among two alternatives (Roemmele, Bejan, and Gordon 2011), fact
verification (Thorne et al. 2018) and argument reasoning (Habernal et al. 2018). Seven
papers investigated multiple tasks.

Overall, 18 RTE and 37 MRC datasets were analysed or used at least once. We
attribute this difference in number to the existence of various MRC datasets and the
tendency of performing multi-dataset analyses in papers that investigate MRC datasets
(Kaushik and Lipton 2018; Si et al. 2019; Sugawara et al. 2020). SQUAD (Rajpurkar
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et al. 2016) for MRC and MNLI (Williams, Nangia, and Bowman 2018) and SNLI
(Bowman et al. 2015) for RTE are the most utilised datasets in the surveyed literature
(with 32, 43 and 29 papers investigating or using them retrospectively).

2.4 Identified weaknesses in NLU data and models

In this section, we aggregate and report the types of weaknesses that have been reported
in the surveyed literature. State-of-the-art approaches to solve the investigated tasks are
predominantly data driven, we distinguish between issues identified in their training
and evaluation data on the one hand, and inhowfar these issues affect the trained models
on the other hand.

2.4.1 Weaknesses in Data

We identified two prevalent themes in publications discussing weaknesses present in
data: the presence of spurious correlations and quality control issues.

Spurious Correlations Correlations between input data and the expected prediction
are “spurious” if there exists no causal relation between them with regard to the under-
lying task but rather they are an artefact of a specific dataset. They are also referred
to as “(annotation) artefacts” (Gururangan et al. 2018) or “(dataset) biases” (He, Zha,
and Wang 2019) in literature.

In span extraction tasks, where the task is to predict a continuous span of token in
text, as is the case with MRC, question and passage wording, as well as the position
of the answer span in the passage, are indicative of the expected answer for various
datasets (Rychalska et al. 2018; Kaushik and Lipton 2018) such that models can solve
examples correctly even without being exposed to either the question or the passage.
In the ROC stories dataset (Mostafazadeh et al. 2016) where the task is to choose the
most plausible ending to a story, the writing style of the expected ending differs from
the alternatives (Schwartz et al. 2017). This difference is noticeable even by humans
(Cai, Tu, and Gimpel 2017).

For sentence pair classification tasks, such as RTE, Poliak et al. (2018) and Guru-
rangan et al. (2018) showed that certain n-grams, lexical and grammatical constructs
in the hypothesis as well as its length correlate with the expected label for a multi-
tude of RTE datasets. McCoy, Pavlick, and Linzen (2019) showed that lexical features
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like word overlap and common subsequences between the hypothesis and premise are
highly predictive of the entailment label in the MNLI dataset. Beyond RTE, the choices
in the COPA dataset (Roemmele, Bejan, and Gordon 2011) where the task is to finish
a given passage (similar to ROC Stories), and ARCT (Habernal et al. 2018) where the
task is to select whether a statement warrants a claim, contain words that correlate with
the expected prediction (Kavumba et al. 2019; Niven and Kao 2019).

Data Quality Pavlick and Kwiatkowski (2019) argue that when training data are
annotated using crowdsourcing, a fixed label representing the ground truth, usually
obtained by majority vote between annotators, is not representative of the uncertainty,
which can be important to indicate the complexity of an example. A single ground
truth label further fails to capture the ambiguity of the expected prediction, to the ex-
tent that sometimes factually wrong labels are assigned to gold standard data (Pugaliya
et al. 2019; Schlegel et al. 2020). In “multi-hop” datasets, such as HOTPOTQA and
WIKIHOP where the task is to find an answer after aggregating evidence across mul-
tiple documents, this process can be circumvented in the case of examples where the
location of the final answer is cued by the question (Min et al. 2019). For an example,
consider the following question: “What is the 2010 population of the city 2.1 miles
southwest of Marietta Air Force Station?”2 While initially this looks like a complex
question that requires spatial reasoning over multiple documents, the keyword combi-
nation “2010” and “population” in the question is unique to the answer sentence across
all accompanying sentences, allowing to find the answer to the question without fully
reading the whole context. The initially complex question can be substituted by the
much easier question “What is the 2010 population?” which does not require any rea-
soning and has a unique answer that coincides with the expected answer to the original
question. This is especially true for multiple-choice task formulation, as the correct
answer can often be “guessed” by excluding implausible alternatives (Chen and Dur-
rett 2019), e.g. by matching the interrogative pronoun with the corresponding lexical
answer type. This is exemplified in Figure 2.2. Sugawara et al. (2018) show that mul-
tiple MRC benchmarks contain numerous questions that are easy to answer, as they do
require little comprehension or inference skills, and can be solved by looking at the
first few tokens of the question indicating low question type variety and complexity.
This property appears ubiquitous among multiple datasets (Longpre, Lu, and DuBois
2020). Finally, Rudinger, May, and Van Durme (2017) show the presence of gender

2we will encounter this example again in Chapter 3.
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Passage 1: “I Feel So” is the first single released by Box Car Racer from their
eponymous album. The single peaked at # 8 on the U.S. Modern Rock Tracks Chart.
Passage 2: Thomas Matthew “Tom” DeLonge, Jr. (born December 13, 1975), is
an American musician, singer, songwriter, record producer, entrepreneur, and film
producer. [. . . ]. He formed Blink-182 with bassist Mark Hoppus and drummer
Scott Raynor during his high school years. The band created a following in the
mid-1990s through independent releases and relentless touring, particularly in their
home country and in Australia. They signed to MCA Records in 1996 and their
second album, “Dude Ranch” (1997), featured the hit single “Dammit”.
Passages 3: Box Car Racer was an American rock band formed in San Diego,
California in 2001. The group consisted of guitarist and vocalist Tom DeLonge and
drummer Travis Barker of Blink-182, alongside guitarist David Kennedy of Hazen
Street. Anthony Celestino later joined the ensemble as a bassist. [. . . ]
Question: What is the record label of “I Feel So”?
Answer Candidates: (A) 1996 (B) album (C) mca records (D) record

Figure 2.2: Example from a dataset artefact from a dataset where the requirement to
synthesise information from three accompanying passages can be circumvented by the
fact that the expected answer candidate is a the only named entity. Additionally, this
example exhibits a “factually debatable” answer: it is not evident from the context
alone that the label for the song in question is in fact the expected answer.

and racial stereotypes in crowd-sourced RTE datasets.

The presence of cues casts doubts on the requirements of various reading com-
prehension capabilities, if a simpler model can perform reasonably well by exploiting
these cues. The situation is similar when expected answers are factually wrong. In
either case, data quality issues diminish the explanatory power of observations about
models evaluated on these data.

2.4.2 Model Weaknesses

Dependence on dataset-specific artefacts Given the data-related issues discussed
above, it is worthwhile knowing whether models optimised on this data actually in-
herit them. In fact, multiple studies confirm this hypothesis, demonstrating that eval-
uating models on a version of the data where the correlations do not exist results in
poor prediction performance (McCoy, Pavlick, and Linzen 2019; Niven and Kao 2019;
Kavumba et al. 2019).

Neural models tend to disregard syntactic structure (Basaj et al. 2018; Rychal-
ska et al. 2018) and important words (Mudrakarta et al. 2018), making them insen-

sitive towards small but potentially meaningful perturbations in inputs. This results
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in MRC models that are negatively impacted by the presence of lexically similar but
semantically irrelevant “distractor sentences” (Jia and Liang 2017; Jiang and Bansal
2019), give inconsistent answers to semantically equivalent input (Ribeiro, Singh, and
Guestrin 2018), or fail to distinguish between semantically different inputs with simi-
lar surface form (Gardner et al. 2020; Welbl et al. 2020). For RTE, they may disregard
the composition of the sentence pairs (Nie, Wang, and Bansal 2019).

Poor generalisation outside of training distribution Mediocre performance when
evaluated on RTE (Glockner, Shwartz, and Goldberg 2018; Naik et al. 2018; Yanaka
et al. 2019b) and MRC data (Talmor and Berant 2019; Dua et al. 2019a) that stems from
a different generative process than the training data (leading to out-of-distribution ex-
amples) reinforces the fact that models pick up spurious correlations that do not hold
between different datasets, as outlined above. Limited out-of-distribution generalisa-
tion capabilities of state-of-the-art models suggest that they are “lazy learners”: when
possible, they infer simple decision strategies from training data that are not represen-
tative of the corresponding task, instead of learning the necessary capabilities to per-
form inference. Nonetheless, recent work shows that the self-supervised pre-training
of transformer-based language models allows them to adapt to the new distribution
from few examples (Brown et al. 2020; Schick and Schütze 2020).

No-assumption architectures Note that these weaknesses arise because state-of-
the-art end-to-and architectures3 (Bahdanau, Cho, and Bengio 2015), such as the trans-
former (Vaswani et al. 2017), are designed with minimal assumptions. As little as
possible prior knowledge is encoded into the model architecture—all necessary in-
formation is expected to be inferred from the (pre-)training data. The optimisation
objectives reflect this assumption as well: beyond the loss function accounting for the
error in prediction, hardly any regularisation is used. As a consequence, there is no
incentive for models to distinguish between spurious and reliable correlations, so they
follow the strongest signal present in data. In fact, one of the main themes discussed in
Section 2.5.3 is to inject additional knowledge, e.g. in the form of more training data
or heavier regularisation, as a counter measure, in order to make the optimised model
rely less on potentially biased data. For example, models that operate over syntax trees
rather than sequences tend to be less prone to syntactic biases (McCoy, Pavlick, and

3Note that we refer to the neural network architecture of a model as “architecture”, e.g. BiDAF
(Seo et al. 2017), while we refer to a (statistical) model of a certain architecture that was optimised on a
specific training set simply as “model”.
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Partial baselines
Heuristics & Correlations
Manual Analysis

Stress-Test
Adversarial Evaluation

Data Augmentation
Model & Training Improvements

Investigating
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Data
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(b)
Evaluation
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Training

Figure 2.3: Taxonomy of investigated methods. Labels (a), (b) and (c) correspond to
the coarse grouping discussed in Section 2.5.
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Figure 2.4: Number of methods per category split by task. As multiple papers report
more than one method, the maximum (160) does not add up to the number of surveyed
papers (121).

Linzen 2019).

2.5 Categorisation of methods that reveal and overcome
weaknesses in NLU

In the following section we categorise the methodologies collected from the surveyed
papers, briefly describe the categories and exemplify them by referring to respective
papers. On a high level, we distinguish between methods that: (a) reveal systematic
issues with existing training and evaluation data such as the spurious correlations men-
tioned above, (b) investigate whether they translate to models optimised on these data
with regard to acquired inference and reasoning capabilities, and (c) propose architec-
tural and training procedure improvements in order to alleviate the issues and improve
the robustness of the investigated models. A schematic overview of the taxonomy of
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the categories is shown in Figure 2.3. The quantitative results of the categorisation are
shown in Figure 2.4.

2.5.1 Data-investigating Methods

Table 2.1: Summary of data-investigating methods with the corresponding research
questions.

Method Task target
weakness

Pursued research question

Partial
input baselines

any with multi-
ple input parts

spurious
correlations

Are all parts of the input required for the
prediction?

Data ablation any data quality Is the capability represented by the re-
moved data necessary to solve the dataset?

Architectural
Constraint

any data quality is the capability restricted by the constraint
necessary to solve the dataset?

Heuristics classification spurious
correlations

Which features that correlate with the ex-
pected label are spurious?

Manual Analysis any data quality Does the data represent the challenges of
the underlying task?

Methods in this category analyse flaws in data such as cues in input that are predic-
tive of the output (Gururangan et al. 2018). As training and evaluation data from state-
of-the-art NLU datasets are assumed to be drawn from the same distribution, models
that were fitted on those cues achieve high performance in the evaluation set, without
being tested on the required inference capabilities. Furthermore, methods that investi-
gate the evaluation data in order to better understand the assessed capabilities (Chen,
Bolton, and Manning 2016) fall under this category as well. In the analysed body of
work, we identified the types of methods discussed in the following paragraphs. In
Table 2.1 we summarise them with their corresponding investigation goal.

Partial Baselines are employed in order to verify that all input provided by the task
is actually required to make the right prediction (e.g. both question and passage for
MRC, and premise and hypothesis for RTE). If a classifier trained on partial input per-
forms significantly better than a random guessing baseline, it stands to reason that the
omitted parts of the input are not required to solve the task. On the one hand, this
implies that the input used to optimise the classifier might exhibit cues that simplify
the task. On the other hand, if the omitted data represents a specific capability, the con-
clusion is that this capability is not evaluated by the dataset, a practice we refer to as
Data Ablation. Examples for the former include training classifiers that perform much
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better than the random guess baseline on hypotheses only for the task of RTE (Guru-
rangan et al. 2018; Poliak et al. 2018) and on passages only for MRC (Kaushik and
Lipton 2018)4. For the latter, Sugawara et al. (2020) drop words that are required to
perform certain comprehension abilities (e.g. dropping pronouns to evaluate pronom-
inal coreference resolution capabilities) and reach performance comparable to that of
a model that is trained on the full input on a variety of MRC datasets. Nie, Wang, and
Bansal (2019) reach near state-of-the-art performance on RTE tasks when shuffling
words in premise and hypothesis, showing that understanding the compositional lan-
guage is not required by these datasets. A large share of work in this area concentrates
on evaluating datasets with regard to the requirement to perform “multi-hop” reasoning
(Min et al. 2019; Chen and Durrett 2019; Jiang and Bansal 2019; Trivedi et al. 2020)
by measuring the performance of a partial baseline that exhibits what we refer to as
a Architectural Constraint to perform single-hop reasoning (e.g. by processing input
sentences independently).

Insights from partial baseline methods bear negative predictive power only— their
failure does not necessarily entail that the data is free of cues, as they can exist in differ-
ent parts of the input. As an example, consider an MRC dataset, where the three words
before and after the answer span are appended to the question. Partial baselines would
not be able to pick up this cue, because it can only be exploited by considering both
question and passage. Feng, Wallace, and Boyd-Graber (2019) show realistic examples
of this phenomenon in published datasets. Furthermore, above-chance performance of
partial baselines merely hints at spurious correlations in the data and suggests that
models learn to exploit them; it does not reveal their precise nature.

Heuristics and Correlations are used to unveil the nature of cues and spurious cor-
relations between input and expected output. For sentence pair classification tasks,
modelling the co-occurrence of words or n-grams with the expected prediction label
by means of point-wise mutual information (Gururangan et al. 2018) or conditional
probability (Poliak et al. 2018; Tan et al. 2019) shows the likelihood of an expression
being predictive of a label. Measuring coverage (Niven and Kao 2019) further indi-
cates what proportion of the dataset is affected by this correlation. These exploratory
methods require no apriori assumptions about the kind of bias they can reveal. Other
methods require more input, such as qualitative data analysis and identification of syn-
tactic (McCoy, Pavlick, and Linzen 2019) and lexical (Liu et al. 2020b) patterns that

4In some cases they even match or surpass the performance of the reference full-input model.
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correlate with the expected label. Furthermore, Nie, Wang, and Bansal (2019) use
the confidence of a logistic regression model optimised on lexical features to predict
the wrong label to rank data by their requirements to perform comprehension beyond
lexical matching.

It is worth highlighting that there is comparatively little work analysing MRC data
(4 out of 18 surveyed methods) with regard to spurious correlations. We attribute
this to the fact that it is hard to conceptualise the correlations of input and expected
output for MRC beyond very coarse and straight-forward heuristics such as sentence
position (Si et al. 2020) or lexical overlap (Sugawara et al. 2018), as the input is a whole
paragraph and a question and the expected output is typically a span anywhere in the
paragraph. Furthermore, the prediction labels (paragraph indices for answer spans or
the number of the chosen alternative for multiple choice-type of questions) do not bear
any semantic meaning, so correlation between input and predicted raw output, such as
those discussed above, can only unveil positional bias. For RTE, in contrast, the input
consists of two sentences and the expected output is one of three fixed class labels that
carry the same semantics regardless of the input, therefore possible correlations are
easier to unveil.

Manual Analyses are performed to qualitatively analyse the data, if automated ap-
proaches, like those mentioned above, are unsuitable due to the complexity of the
phenomena of interest or the output space discussed above. We posit that this is the
reason why most methods in this category concern analysing MRC data (7 out of 9
surveyed methods). Qualitative annotation frameworks were proposed to investigate
the presence of linguistic features (Schlegel et al. 2020) and cognitive skills required
for reading comprehension (Sugawara et al. 2017).

2.5.2 Model-investigating Methods

Rather than analysing data, approaches described in this section directly evaluate mod-
els in terms of their inference capabilities with respect to various phenomena of inter-
est. Released evaluation resources are summarised in Table 2.2.

Challenge Sets make for an increasingly popular way to assess various capabilities
of optimised models. Challenge sets feature a collection of (typically artificially gen-
erated) examples that exhibit a specific phenomenon of interest. Bad performance on
the challenge set indicates that the model has failed to obtain the capability to process
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the phenomenon correctly. Similar to partial baselines, a good result does not neces-
sarily warrant the opposite, unless guarantees can be made that the challenge set is per-
fectly representative of the investigated phenomenon. Naik et al. (2018) automatically
generate RTE evaluation data based on an analysis of observed state-of-the-art model
error patterns, introducing the term “stress-test”. Challenge sets have since been pro-
posed to evaluate RTE models with regard to the acquisition of linguistic capabilities
such as monotonicity (Yanaka et al. 2019a), lexical inference (Glockner, Shwartz, and
Goldberg 2018), logic entailment relations (Richardson et al. 2019) and understanding
language compositionality (Nie, Wang, and Bansal 2019). With respect to MRC, we
note that there are few (11) challenge sets concerning rather broad categories such as
prediction consistency (Ribeiro, Guestrin, and Singh 2019; Gardner et al. 2020), ac-
quired knowledge (Richardson and Sabharwal 2019), or transfer to different datasets
(Dua et al. 2019a; Miller et al. 2020).

Notably, these challenge sets are well suited to evaluate the capabilities they set
out to investigate, because they perform a form of out-of-distribution evaluation. Since
the evaluation data stems from a different (artificial) generative process than typically
crowd-sourced training data, possible decision rules based on cues are more likely to
fail. The drawback of this, however, is that in this way the challenge sets evaluate both
the investigated capability and the performance under distribution shift. Liu, Schwartz,
and Smith (2019) show that for some of the challenge sets, after fine-tuning (“inocu-
lating”) on small portions of it, the challenge set performance increases, without sac-
rificing the performance on the original data. However, Rozen et al. (2019) show that
good performance after fine-tuning cannot be taken as evidence of the model learning
the phenomenon of interest–rather the model adapts to the challenge-set specific dis-
tribution and fails to capture the general notion of interest. This is indicated by low
performance when evaluating on challenge sets that stem from a different generative
process but focus on the same phenomenon. These results suggest that the “inocula-
tion” methodology is of limited suitability to disentangle the effects of domain shift
from evaluating the capability to process the investigated phenomenon.

Furthermore, a line of work proposes to evaluate the systematic generalisation ca-
pabilities of RTE models (Geiger et al. 2019; Geiger, Richardson, and Potts 2020;
Goodwin, Sinha, and O’Donnell 2020), concretely the capability to infer and under-
stand compositional rules that underlie natural language. However, These studies con-
cern mostly artificial languages, such as a restricted form of English with a phantasy
vocabulary.
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Adversarial Evaluation introduces evaluation data that was generated with the aim
to “fool” models. Szegedy et al. (2014) define “adversarial examples” as (humanly)
imperceptible perturbations to images that cause a significant drop in the prediction
performance of neural models. Similarly for NLP, we refer to data as “adversarial” if
it is designed to minimise prediction performance for a class of models, while not im-
pacting the human baseline. Adversarial methods are used to show that models rely on
superficial, dataset-specific cues, as discussed in Section 2.4.2. This is typically done
by creating a balanced version of the evaluation data, where the previously identified
spurious correlations present in training data do not hold anymore (McCoy, Pavlick,
and Linzen 2019; Kavumba et al. 2019; Niven and Kao 2019), or by applying semantic
preserving perturbations to the input (Jia and Liang 2017; Ribeiro, Singh, and Guestrin
2018). Note that this is yet another method that alters the distribution of the evaluation
data with respect to the training data.

Adversarial techniques are further used to understand model behaviour (Sanchez,
Mitchell, and Riedel 2018), such as identifying training examples (Han, Wallace, and
Tsvetkov 2020) or neuron activations (Mu and Andreas 2020) that contribute to a cer-
tain prediction. Among those we highlight the work by Wallace et al. (2019), who
showed that malicious adversaries generated against a target model tend to be univer-
sal for a whole range of neural architectures.

2.5.3 Model-improving Methods

Here we report methods that improve the robustness of models against adversarial and
out-of-distribution evaluation, by either modifying training data, or making adjust-
ments to model architecture or training procedures. We group the methods by their
conceptual approach and present them together with their applications in Table 2.3.
In line with the literature (Wang and Bansal 2018; Jia et al. 2019), we call a model
“robust” against a method that alters the underlying distribution of the evaluation data
(hence making it substantially different from the training data) through e.g., adver-
sarial or challenge sets, if the out-of-distribution performance of the model is similar
to that on the original evaluation set. They have become increasingly popular: 30%,
35% and 51% of the surveyed methods published in the years 2018, 2019 and 2020,
respectively, fall into this category (and none before 2018). We attribute this to the
public availability of evaluation resources discussed in Section 2.5.2 as they facilitate
the rapid prototyping and testing of these methods.
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Table 2.3: Categorisation of methods that have been proposed to overcome weaknesses
in models and data. We refer to the application of a method to improve the performance
on a challenge set by referring to the challenge set name as presented in Table 2.2.

Approach Description
→ Applications

Data Augmenta-
tion

uses additional training data to improve performance on a phenomenon or to
combat a model weakness
→ Counterfactual augmentation for RTE and MRC (Kaushik et al. 2020;
Khashabi, Khot, and Sabharwal 2020; Asai and Hajishirzi 2020), adversar-
ially generated training data for MRC (Jiang and Bansal 2019; Wang and
Bansal 2018; Yang et al. 2020), Monotonicity reasoning for RTE (Yanaka
et al. 2019b)

Adversarial Fil-
tering

minimises dataset artefacts by removing/replacing data points that can be pre-
dicted with high confidence during multiple cross-validation runs
→ removal of data exhibiting spurious correlations in commonsense reasoning
datasets (Zellers et al. 2018, 2019; Sakaguchi et al. 2019; Bras et al. 2020)

Humans as ad-
versaries

Ground truth annotations from crowd-workers are only approved if an opti-
mised model cannot predict them
→ applied for RTE (Nie et al. 2020) MRC (Dua et al. 2019b) and MCQA
(Chen et al. 2019) datasets

Bias Ensembling

trains a robust model with an artificially biased model; this discourages the
robust model to learn biases picked up by biased model
→ Answer position Bias in MRC (Ko et al. 2020), ADDSENT (Clark, Yatskar,
and Zettlemoyer 2019); synthetic data, HANS and STRESSTEST (Mahabadi,
Belinkov, and Henderson 2020; He, Zha, and Wang 2019; Zhou and Bansal
2020), HYPONLY and transfer learning between RTE datasets (Belinkov et al.
2019)

Downweighting

scales down the contribution of biased data points (as e.g. identified by partial
baseline methods) to the overall loss minimising objective of the training set
→ FEVER-B (Schuster et al. 2019), HYPONLY, HANS and transfer learning
between RTE datasets (Zhang et al. 2019b; Mahabadi, Belinkov, and Hender-
son 2020; Utama, Moosavi, and Gurevych 2020), . . .

Example Forget-
ting

identifies examples that are misclassified during training as “hard” examples;
hard examples are used for additional fine-tuning
→ HANS (Yaghoobzadeh et al. 2019)

Regularisation
with expert
knowledge

uses regularisation terms to encode expert domain knowledge
→ linguistic knowledge for ADDSENT (Zhou, Huang, and Zhu 2019; Wu
and Xu 2020), Named Entity Recognition (NER) for NERCHANGED and
ROLESWITCHED (Mitra, Shrivastava, and Baral 2020), Semantic Role La-
belling (SRL) for ADDSENT (Chen and Durrett 2020), Consistency on coun-
terfactual examples for RTE and QA (Teney, Abbasnedjad, and Hengel 2020;
Asai and Hajishirzi 2020)

Adversarial
Training

trains model on data that was generated to maximise the prediction error of
the model
→ ADDSENT (Yuan et al. 2019a; Liu et al. 2020a,c; Welbl et al. 2020); Word
Perturbations in RTE (Jia et al. 2019); HYPONLY (Stacey et al. 2020; Liu et al.
2020b)

Multi-task learn-
ing

optimised the model jointly on an additional task that provides additional sig-
nal against a weakness
→ Explanation Reconstruction for MRC (Rajagopal et al. 2020); Paraphrase
identification and SRL for HANS (Tu et al. 2020; Cengiz and Yuret 2020)
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Data Augmentation and Pruning combat the issues arising from low-bias archi-
tecture by injecting the required knowledge,in the form of (usually synthetically gen-
erated) data, during training. There is ample evidence that augmenting training data
with examples featuring a specific phenomenon increases the performance on a chal-
lenge set evaluating that phenomenon (Wang et al. 2018; Jiang and Bansal 2019; Zhou
and Bansal 2020). For example, Yanaka et al. (2019b) propose an automatically con-
structed dataset as an additional training resource to improve monotonicity reasoning
capabilities in RTE. As these augmentations come at the cost of lower performance
on the original evaluation data, Maharana and Bansal (2020) propose a framework to
combine different augmentation techniques such that the performance on both is opti-
mised.

More interesting are approaches that augment data without focussing on a spe-
cific phenomenon. By increasing data diversity, better performance under adversarial
evaluation can be achieved (Talmor and Berant 2019; Tu et al. 2020). Similarly, aug-
menting training data in a meaningful way, e.g. with counter-examples, by asking
crowd-workers to apply perturbations that change the expected label (Kaushik, Hovy,
and Lipton 2020; Khashabi, Khot, and Sabharwal 2020), helps models to achieve better
robustness beyond the training set distribution.

An alternative direction is to increase data quality by removing data points that ex-
hibit spurious correlations. After measuring the correlations with methods discussed in
Section 2.5.1, those training examples exhibiting strong correlations can be removed.
The AFLITE algorithm (Sakaguchi et al. 2019) combines both of these steps by as-
suming that a linear correlation between embeddings of inputs and prediction labels
is indicative of biased data points. This is an extension of the Adversarial Filtering

algorithm (Zellers et al. 2018), whereby multiple choice alternatives are automatically
generated until a target model can no longer distinguish between human-written (cor-
rect) and automatically generated (wrong) options.

A noteworthy trend is the application of adversarial data generation against a
target model that is employed during the construction of a new dataset. In crowd-
sourcing, humans act as adversary generators and an entry is accepted only if it trig-
gers a wrong prediction by a trained target model (Nie et al. 2020; Dua et al. 2019b).
Mishra et al. (2020) combine both directions in an interface which aims to assist re-
searchers who publish new datasets with different visualisation, filtering and pruning
techniques.
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Architecture and Training Procedure Improvements deviate from the idea of data
augmentation and seek to train robust models from potentially biased data. Adversar-
ial techniques (Goodfellow et al. 2014), in which a generator of adversarial training
examples (such as those discussed in Section 2.5.2, e.g. perturbing the input) is trained
jointly with the discriminative model that is later used for inference, have been applied
to different NLU tasks (Stacey et al. 2020; Welbl et al. 2020).

Specific knowledge about the type of bias present in data can be used to discour-
age a model from learning from it. For example, good performance (as indicated by
a small loss) of a partial input classifier is interpreted as an indication that data points
could exhibit spurious correlations. This information can be used to train an “unbi-
ased” classifier jointly (Clark, Yatskar, and Zettlemoyer 2019; He, Zha, and Wang
2019; Belinkov et al. 2019). Alternatively, their contribution to the overall optimi-
sation objective can be re-scaled (Schuster et al. 2019; Zhang et al. 2019c; Mehrabi
et al. 2019). The intuition behind these approaches is similar to Adversarial Filtering

which is mentioned above: the contribution of biased data to the overall training is
reduced. For lexical biases, such as cue words, Utama, Moosavi, and Gurevych (2020)
show that a biased classifier can be approximated by overfitting a regular model on a
small portion of the training set. For RTE, (Zhang et al. 2020) compare the effects
of different proposed de-biasing variants discussed in this paragraph. They find that
these approaches yield moderate improvements in out-of-distribution performance (up
to 7% using the method by He, Zha, and Wang (2019)).

In an effort to incorporate external knowledge into the model to increase its ro-
bustness, multi-task training frameworks with Semantic Role Labelling (SRL) (Cen-
giz and Yuret 2020) and explanation reconstruction (Rajagopal et al. 2020) have been
proposed. It is interesting to note that SRL is a popular choice for incorporating addi-
tional linguistic information (Wu et al. 2019; Chen and Durrett 2020), due to the fact
that it exhibits syntactic and semantic information independent of the specific dataset.
Additional external resources encoded into the models during training can be named
entities (Mitra, Shrivastava, and Baral 2020), information from knowledge bases (Wu
and Xu 2020) or logic constraints (Minervini and Riedel 2018).

Interestingly, inconsistency on counter-examples, such as those used for training
data augmentation, can be explicitly utilised as a regularisation penalty, to encourage
models to detect meaningful differences in input data (Teney, Abbasnedjad, and Hen-
gel 2020; Asai and Hajishirzi 2020). Counter-measures for circumventing multi-hop
reasoning are providing labels as strong supervision signal for spans that bridge the
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Figure 2.5: Datasets by publication year with NO or ANY spurious correlations detec-
tion methods applied; applied in a LATER publication; created ADVersarially, or BOTH.

information between multiple sentences (Jiang and Bansal 2019) or decomposing and
sequentially processing compositional questions (Tang, Ng, and Tung 2020).

2.6 Impact on the Creation of New Datasets

Finally, we report whether the existence of spurious correlations is considered when
publishing new resources, by applying any quantitative methods such as those dis-
cussed in Section 2.5.1, or whether some kind of adversarial pruning discussed in
2.5.3 was employed. The results are shown in Figure 2.5. We observe that the publica-
tions we use as our seed papers for the survey (c.f. Section 2.2) in fact seem to impact
how novel datasets are presented, as after their publication (in years 2017 and 2018),
a growing number of papers report partial baseline results and existing correlations in
their data (four in 2018 and five in 2019). Furthermore, newly proposed resources are
increasingly pruned against state-of-the-art approaches (nine in 2018 and 2019 cumu-
lative). However, for nearly a half (44 out of 95) of the datasets under investigation
there is no information about potential spurious correlations yet. The scientific com-
munity would benefit from an application of the quantitative methods that have been
presented in this survey to those NLU datasets.

2.7 Discussion and Conclusion

We present a structured survey of methods that reveal flaws in NLU datasets, methods
that show that neural models inherit those correlations or assess their capabilities oth-
erwise, and methods that mitigate those weaknesses. Due to the prevalence of simple,
low-bias architectures, the lack of data diversity and existence of data specific artefacts
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result in models that fail to discriminate between spurious and reliable correlation sig-
nals in training data. This, in turn, confounds the hypotheses about the capabilities
they acquire when trained and evaluated on these data. More realistic, lower esti-
mates of their capabilities are reported when evaluated on data drawn from a different
distribution and with focus on specific capabilities. Efforts towards more robust mod-
els include injecting additional knowledge by augmenting training data or introducing
constraints into the model architecture, heavier regularisation and training on auxiliary
tasks, or encoding more knowledge-intensive input representations.

Based on these insights, we formulate the following recommendations for possible
future research directions:

• Most methods discussed in this survey bear only negative predictive power, but
the absence of negative results cannot be interpreted as positive evidence. This
can be taken as a motivation to put more effort into research that verifies robust-
ness (Shi et al. 2020), develops model “test suites” inspired by good software
engineering practices (Ribeiro et al. 2020), or provides worst-case performance
bounds (Raghunathan, Steinhardt, and Liang 2018; Jia et al. 2019). Similar en-
deavours are pursued by researchers that propose to overthink the empirical risk
minimisation (ERM) principle where the assumption is that the performance on
the evaluation data can be approximated by the performance on training data,
in favour of approaches that relax this assumption. Examples include optimis-
ing worst-case performance on a group of training sets (Sagawa et al. 2020)
or learning features that are invariant in multiple training environments (Teney,
Abbasnejad, and Hengel 2020).

• While one of the main themes for combatting reliance on spurious correlations is
by injecting additional knowledge, there is a need for a systematic investigation
of the type and amount of prior knowledge on neural models’ out-of-distribution
adversarial and challenge set evaluation performance.

• Partial input baselines are conceptually simple and cheap to employ for any task,
so researchers should be encouraged to apply and report their performance when
introducing a novel dataset. While not a guarantee for the absence of spurious
correlations (Feng, Wallace, and Boyd-Graber 2019), they can hint at their pres-
ence and provide more context to quantitative evaluation scores. The same holds
true for methods that report existing correlations in data.
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• Using training set-free, expert-curated evaluation benchmarks that focus on spe-
cific phenomena (Linzen 2020) is an obvious way to evaluate capabilities of
NLP models without the confounding effects of spurious correlations between
training and test data. Challenge sets discussed in this work, however, measure
the performance on the investigated phenomenon on out-of-distribution data and
provide informal arguments on why the distribution shift is negligible. How to
formally disentangle this effect from the actual capability to process the investi-
gated phenomenon remains an open question.

Specifically for the area of NLU as discussed in this paper, we additionally outline
the following recommendations:

• Adapting methods applied to RTE datasets or developing novel methodologies
to reveal cues and spurious correlations in MRC data is a possible future research
direction.

• The growing number of MRC datasets provides a natural test-bed for the evalu-
ation of out-of-distribution generalisation. Studies concerning this (Talmor and
Berant 2019; Fisch et al. 2019; Miller et al. 2020), however, mostly focus on em-
pirical experiments. Theoretical contributions, e.g. by using the causal inference
framework (Magliacane et al. 2017), could help to explain their results.

• Due to its flexibility, the MRC task allows for the formulation of problems that
are inherently hard for the state of the art, such as systematic generalisation
(Lake and Baroni 2017). Experiments with synthetic data, such as those dis-
cussed in this paper, need to be complemented with natural datasets, such as
evaluating the understanding of and appropriate reactions to new situations pre-
sented in the context. Talmor et al. (2020) make a step in this direction.

• While RTE is increasingly becoming a popular task to attribute various reading
and reasoning capabilities to neural models, the transfer of those capabilities to
different tasks, such as MRC, remains to be seen. Additionally, the MRC task
requires further capabilities that cannot be tested in an RTE setting conceptu-
ally, such as selecting the relevant answer sentence from distracting context or
integrating information from multiple sentences, both shown to be inadequately
tested by current state-of-the-art gold standards (Jia and Liang 2017; Jiang and
Bansal 2019). Therefore, it is important to develop those challenge sets for MRC
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models as well, in order to gain a more focussed understanding of their capabil-
ities and limitations.

It is worth mentioning, that—perhaps unsurprisingly—neural models’ notion of
complexity does not necessarily correlate with that of humans. In fact, after creating
a “hard” subset of their evaluation data that is clean of spurious correlations, Yu et al.
(2020) report an increase in human performance, directly contrary to the neural models
they evaluate. Partial baseline methods suggest a similar conclusion: without the help
of statistics, humans will arguably not be able to infer whether a sentence is entailed
by another sentence they never see, whereas neural networks excel at it (Poliak et al.
2018; Gururangan et al. 2018).

We want to highlight that the availability of multiple large-scale datasets, albeit
exhibiting flaws or spurious correlations, together with the methods, such as those dis-
cussed in this survey, are a necessary prerequisite to gain empirically grounded under-
standing of what the current state-of-the-art NLU models are learning and where they
still fail. This gives targeted suggestions when building the next iteration of datasets
and model architectures, and therefore advancec the research in NLP. While necessary,
it remains to be seen whether this iterative process is sufficient to yield systems that are
robust enough to perform any given natural language understanding task, the so-called
“general linguistic intelligence” (Yogatama et al. 2019).



Chapter 3

A Framework for Evaluation of
Machine Reading Comprehension
Gold Standards1

Abstract

Machine Reading Comprehension (MRC) is the task of answering a question

over a paragraph of text. While neural MRC systems gain popularity and achieve

noticeable performance, issues are being raised with the methodology used to

establish their performance, particularly concerning the data design of gold stan-

dards that are used to evaluate them. There is but a limited understanding of the

challenges present in this data, which makes it hard to draw comparisons and for-

mulate reliable hypotheses. As a first step towards alleviating the problem, this

paper proposes a unifying framework to systematically investigate the present lin-

guistic features, required reasoning and background knowledge and factual cor-

rectness on one hand, and the presence of lexical cues as a lower bound for the

requirement of understanding on the other hand. We propose a qualitative anno-

tation schema for the first and a set of approximative metrics for the latter. In a

first application of the framework, we analyse modern MRC gold standards and

present our findings: the absence of features that contribute towards lexical ambi-

guity, the varying factual correctness of the expected answers and the presence of

lexical cues, all of which potentially lower the reading comprehension complexity

and quality of the evaluation data.

1This chapter follows the publication “A Framework for Evaluation of Machine Reading Compre-
hension Gold Standards” (Schlegel et al. 2020).
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3.1 Introduction

There is a recent spark of interest in the task of Question Answering (QA) over unstruc-
tured textual data, also referred to as Machine Reading Comprehension (MRC). This
is mostly due to wide-spread success of advances in various facets of deep learning re-
lated research, such as novel architectures (Vaswani et al. 2017; Sukhbaatar et al. 2015)
that allow for efficient optimisation of neural networks consisting of multiple layers,
hardware designed for deep learning purposes23 and software frameworks (Abadi et al.
2016; Paszke et al. 2017) that allow efficient development and testing of novel ap-
proaches. These factors enable researchers to produce models that are pre-trained on
large scale corpora and provide contextualised word representations (Peters et al. 2018)
that are shown to be a vital component towards solutions for a variety of natural lan-
guage understanding tasks, including MRC (Devlin et al. 2019). Another important
factor that led to the recent success in MRC-related tasks is the widespread availability
of various large datasets, e.g., SQuAD (Rajpurkar et al. 2016), that provide sufficient
examples for optimising statistical models. The combination of these factors yields
notable results, even surpassing human performance (Lan et al. 2020).

MRC is a generic task format that can be used to probe for various natural language
understanding capabilities (Gardner et al. 2019). Therefore it is crucially important to
establish a rigorous evaluation methodology in order to be able to draw reliable conclu-
sions from conducted experiments. While increasing effort is put into the evaluation of
novel architectures, such as keeping the evaluation data from public access to prevent
unintentional overfitting to test data, performing ablation and error studies and intro-
ducing novel metrics (Dodge et al. 2019), surprisingly little is done to establish the
quality of the data itself. Additionally, recent research arrived at worrisome findings:
the data of those gold standards, which is usually gathered involving a crowd-sourcing
step, suffers from flaws in design (Chen and Durrett 2019) or contains overly specific
keywords (Jia and Liang 2017). Furthermore, these gold standards contain “annota-
tion artefacts”, cues that lead models into focusing on superficial aspects of text, such
as lexical overlap and word order, instead of actual language understanding (McCoy,
Pavlick, and Linzen 2019; Gururangan et al. 2018). These weaknesses cast some doubt
on whether the data can reliably evaluate the reading comprehension performance of
the models they evaluate, i.e. if the models are indeed being assessed for their capabil-
ity to read.

2https://cloud.google.com/tpu/
3https://www.nvidia.com/en-gb/data-center/tesla-v100/
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Passage 1: Marietta Air Force Station
Marietta Air Force Station (ADC ID: M-111, NORAD ID: Z-111) is a closed United
States Air Force General Surveillance Radar station. It is located 2.1 mi northeast
of Smyrna, Georgia. It was closed in 1968.
Passage 2: Smyrna, Georgia
Smyrna is a city northwest of the neighborhoods of Atlanta. [. . . ] As of the 2010
census, the city had a population of 51,271. The U.S. Census Bureau estimated the
population in 2013 to be 53,438. [. . . ]
Question: What is the 2010 population of the city 2.1 miles southwest of Marietta
Air Force Station?

Figure 3.1: While initially this looks like a complex question that requires the synthesis
of different information across multiple documents, the keyword “2010” appears in the
question and only in the sentence that answers it, considerably simplifying the search.
Full example with 10 passages can be seen in Appendix E.

Figure 3.1 shows an example from HOTPOTQA (Yang et al. 2018), a dataset that
exhibits the last kind of weakness mentioned above, i.e., the presence of unique key-
words in both the question and the passage (in close proximity to the expected answer).

An evaluation methodology is vital to the fine-grained understanding of challenges
associated with a single gold standard, in order to understand in greater detail which
capabilities of MRC models it evaluates. More importantly, it allows to draw compar-
isons between multiple gold standards and between the results of respective state-of-
the-art models that are evaluated on them.

In this work, we take a step back and propose a framework to systematically anal-
yse MRC evaluation data, typically a set of questions and expected answers to be
derived from accompanying passages. Concretely, we introduce a methodology to cat-
egorise the linguistic complexity of the textual data and the reasoning and potential
external knowledge required to obtain the expected answer. Additionally we propose
to take a closer look at the factual correctness of the expected answers, a quality di-
mension that appears under-explored in literature.

We demonstrate the usefulness of the proposed framework by applying it to pre-
cisely describe and compare six contemporary MRC datasets. Our findings reveal con-
cerns about their factual correctness, the presence of lexical cues that simplify the task
of reading comprehension and the lack of semantic altering grammatical modifiers. We
release the raw data comprised of 300 paragraphs, questions and answers richly anno-
tated under the proposed framework as a resource for researchers developing natural
language understanding models and datasets to utilise further.
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To the best of our knowledge this is the first attempt to introduce a common eval-
uation methodology for MRC gold standards and the first across-the-board qualitative
evaluation of MRC datasets with respect to the proposed categories.

3.2 Framework for MRC Gold Standard Analysis

3.2.1 Dimensions of Interest

In this section we describe a methodology to categorise gold standards according to
linguistic complexity, required reasoning and background knowledge, and their fac-
tual correctness. Specifically, we use those dimensions as high-level categories of a
qualitative annotation schema for annotating questions, expected answers and the cor-
responding contexts. We further enrich the qualitative annotations by a metric based
on lexical cues in order to approximate a lower bound for the complexity of the read-
ing comprehension task. By sampling entries from each gold standard and annotating
them, we obtain measurable results and thus are able to make observations about the
challenges present in that gold standard data.

Problem setting We are interested in different types of the expected answer. We dif-
ferentiate between Span, where an answer is a continuous span taken from the passage,
Paraphrasing, where the answer is a paraphrase of a text span, Unanswerable, where
there is no answer present in the context, and Generated, if it does not fall into any of
the other categories. It is not sufficient for an answer to restate the question or combine
multiple Span or Paraphrasing answers to be annotated as Generated. It is worth men-
tioning that we focus our investigations on answerable questions. For a complementary
qualitative analysis that categorises unanswerable questions, the reader is referred to
Yatskar (2019).

Furthermore, we mark a sentence as Supporting Fact if it contains evidence re-
quired to produce the expected answer, as they are used further in the complexity
analysis.

Factual Correctness An important factor for the quality of a benchmark is its factual
correctness, because on the one hand, the presence of factually wrong or debatable
examples introduces an upper bound for the achievable performance of models on
those gold standards. On the other hand, it is hard to draw conclusions about the
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correctness of answers produced by a model that is evaluated on partially incorrect
data.

One way by which developers of modern crowd-sourced gold standards ensure
quality is by having the same entry annotated by multiple workers (Trischler et al.
2017) and keeping only those with high agreement. We investigate whether this method
is enough to establish a sound ground truth answer that is unambiguously correct. Con-
cretely, we annotate an answer as Debatable when the passage features multiple plau-
sible answers, when multiple expected answers contradict each other, or an answer is
not specific enough with respect to the question and a more specific answer is present.
We annotate an answer as Wrong when it is factually wrong and a correct answer is
present in the context.

Required Reasoning It is important to understand what types of reasoning the bench-
mark evaluates, in order to be able to accredit various reasoning capabilities to the
models it evaluates. Our proposed reasoning categories are inspired by those found
in scientific question answering literature (Jansen et al. 2016; Boratko et al. 2018), as
research in this area focuses on understanding the required reasoning capabilities. We
include reasoning about the Temporal succession of events, Spatial reasoning about
directions and environment, and Causal reasoning about the cause-effect relationship
between events. We further annotate (multiple-choice) answers that can only be an-
swered By Exclusion of every other alternative.

We further extend the reasoning categories by operational logic, similar to those
required in semantic parsing tasks (Berant et al. 2013), as solving those tasks typically
requires “multi-hop” reasoning (Yang et al. 2018; Welbl, Stenetorp, and Riedel 2018).
When an answer can only be obtained by combining information from different sen-
tences joined by mentioning a common entity, concept, date, fact or event (from here
on called entity), we annotate it as Bridge. We further annotate the cases, when the
answer is a concrete entity that satisfies a Constraint specified in the question, when it
is required to draw a Comparison of multiple entities’ properties or when the expected
answer is an Intersection of their properties (e.g. “What do Person A and Person B
have in common?”)

We are interested in the linguistic reasoning capabilities probed by a gold standard,
therefore we include the appropriate category used by Wang et al. (2018). Specifically,
we annotate occurrences that require understanding of Negation, Quantifiers (such as
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“every”, “some”, or “all”), Conditional (“if . . . then”) statements and the logical im-
plications of Con-/Disjunction (i.e. “and” and “or”) in order to derive the expected
answer.

Finally, we investigate whether arithmetic reasoning requirements emerge in MRC
gold standards as this can probe for reasoning that is not evaluated by simple answer
retrieval (Dua et al. 2019b). To this end, we annotate the presence of Addition and
Subtraction, answers that require Ordering of numerical values, Counting and Other

occurrences of simple mathematical operations.

An example can exhibit multiple forms of reasoning. Notably, we do not annotate
any of the categories mentioned above if the expected answer is directly stated in the
passage. For example, if the question asks “How many total points were scored in the
game?” and the passage contains a sentence similar to “The total score of the game was
51 points”, it does not require any reasoning, in which case we annotate it as Retrieval.

Knowledge Worthwhile knowing is whether the information presented in the context
is sufficient to answer the question, as there is an increase of benchmarks deliberately
designed to probe a model’s reliance on some sort of background knowledge (Storks,
Gao, and Chai 2019). We seek to categorise the type of knowledge required. Similar
to Wang et al. (2018), on the one hand we annotate the reliance on factual knowledge,
that is (Geo)political/Legal, Cultural/Historic, Technical/Scientific and Other Domain

Specific knowledge about the world that can be expressed as a set of facts. On the other
hand, we denote Intuitive knowledge requirements, which is challenging to express as
a set of facts, such as the knowledge that a parenthetic numerical expression next to a
person’s name in a biography usually denotes his life span.

Linguistic Complexity Another dimension of interest is the evaluation of various
linguistic capabilities of MRC models (Goldberg 2019; Liu et al. 2019a; Tenney, Das,
and Pavlick 2019). We aim to establish which linguistic phenomena are probed by gold
standards and to which degree. To that end, we draw inspiration from the annotation
schema used by Wang et al. (2018), and adapt it around lexical semantics and syntax.

More specifically, we annotate features that introduce variance between the sup-
porting facts and the question. With regard to lexical semantics, we focus on the use
of redundant words that do not alter the meaning of a sentence for the task of retriev-
ing the expected answer (Redundancy), requirements on the understanding of words’
semantic fields (Lexical Entailment) and the use of Synonyms and Paraphrases with



3.2. FRAMEWORK FOR MRC GOLD STANDARD ANALYSIS 57

respect to the question wording. Furthermore we annotate cases where supporting
facts contain Abbreviations of concepts introduced in the question (and vice versa) and
when a Dative case substitutes the use of a preposition (e.g. “I bought her a gift” vs “I
bought a gift for her”). Regarding syntax, we annotate changes from passive to active
Voice, the substitution of a Genitive case with a preposition (e.g. “of”) and changes
from nominal to verbal style and vice versa (Nominalisation).

We recognise features that add ambiguity to the supporting facts. As opposed to
redundant words, we annotate Restrictivity and Factivity modifiers, words and phrases
whose presence does change the meaning of a sentence with regard to the expected an-
swer, Lastly, we mark ambiguous syntactic features, when their resolution is required
in order to obtain the answer. Concretely, we mark argument collection with con- and
disjunctions (Listing) and ambiguous Prepositions, Coordination Scope and Relative

clauses/Adverbial phrases/Appositions.

Furthermore, we investigate the presence of discourse-level features such as El-

lipsis, where information is only expressed implicitly, and occurrences of intra- or
inter-sentence Coreference in supporting facts (that is relevant to the question).

Complexity Finally, we want to approximate the presence of lexical cues that might
simplify the reading required in order to arrive at the answer. Quantifying this allows
for more reliable statements about and comparison of the complexity of gold standards,
particularly regarding the evaluation of comprehension that goes beyond simple lexical
matching. We propose the use of coarse metrics based on lexical overlap between
question and context sentences. Intuitively, we aim to quantify how much supporting
facts “stand out” from their surrounding passage context. This can be used as proxy for
the capability to retrieve the answer (Chen and Durrett 2019). Specifically, we measure
(i) the number of words jointly occurring in a question and a sentence, (ii) the length of
the longest n-gram shared by question and sentence and (iii) whether a word or n-gram
from the question uniquely appears in a sentence.

The resulting taxonomy of the framework is shown in Figure 3.2. The full cata-
logue of features, their description, detailed annotation guideline as well as illustrating
examples can be found in Appendix C.
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Annotation Schema
Supporting Fact
Answer Type

Paraphrasing - Generated - Span - Unanswerable
Correctness

Debatable - Wrong
Reasoning

Operational
Bridge - Comparison - Constraint - Intersection

Arithmetic
Substraction - Addition - Ordering - Counting - Other

Linguistic
Negation - Quantifiers - Conditional - Monotonicity - Con-/Disjunction

Temporal
Spatial
Causal
By Exclusion
Retrieval

Knowledge
Factual

Cultural/Historic - (Geo)Political/Legal
Technical/Scientific - Other Domain Specific

Intuitive
Linguistic Complexity

Discourse
Coreference - Ellipse/Implicit

Lexical Variety
Redundancy - Lexical Entailment - Dative
Synonym/Paraphrase - Abbreviation - Symmetry

Syntactic Variety
Nominalisation - Genitive - Voice

Lexical Ambiguity
Restrictivity - Factivity

Syntactic Ambiguity
Preposition - Listing - Coordination Scope - Relative Clause/Adverbial/Apposition

Figure 3.2: The hierarchy of categories in our proposed annotation framework. Ab-
stract higher-level categories are presented in bold while actual annotation features are
shown in italics.
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Table 3.1: Summary of selected development sets.

Dataset # passages # questions Style
MSMARCO (Nguyen et al. 2016) 101,093 101,093 Free Form
HOTPOTQA (Yang et al. 2018) 7,405 7,405 Span, Yes/No
RECORD (Zhang et al. 2018) 7,279 10,000 Cloze-Style
MULTIRC (Khashabi et al. 2018) 81 953 Multiple Choice
NEWSQA (Trischler et al. 2017) 637 637 Span
DROP (Dua et al. 2019b) 588 9,622 Span, Numbers

3.3 Application of the Framework

3.3.1 Candidate Datasets

We select contemporary MRC benchmarks to represent all four commonly used MRC
problem definitions (Liu et al. 2019c). In selecting relevant datasets, we do not con-
sider those that are considered “solved”, i.e. where the state of the art performance
surpasses human performance, as is the case with SQUAD (Rajpurkar, Jia, and Liang
2018; Lan et al. 2020). Concretely, we selected gold standards that fit our prob-
lem definition and were published in the years 2016 to 2019, have at least (2019−
publication year)× 20 citations, and bucket them according to the answer selection
styles as described in Section 1.2.1 We randomly draw one from each bucket and add
two randomly drawn datasets from the candidate pool. This leaves us with the datasets
summarised in Table 3.1 and further described in detail below:

MSMARCO (Nguyen et al. 2016) was created by sampling real user queries from
the log of a search engine and presenting the search results to experts in order to se-
lect relevant passages. Those passages were then shown to crowd workers in order to
generate a free-form answer that answers the question or mark if the question is not an-
swerable from the given context. While the released dataset can be used for a plethora
of tasks we focus on the MRC aspect where the task is to predict an expected answer
(if existent), given a question and ten passages that are extracted from web documents.

HOTPOTQA (Yang et al. 2018) is a dataset and benchmark that focuses on “multi-
hop” reasoning, i.e. information integration from different sources. To that end the
authors build a graph from a where nodes represent first paragraphs of Wikipedia arti-
cles and edges represent the hyperlinks between them. They present pairs of adjacent
articles from that graph or from lists of similar entities to crowd-workers and request
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them to formulate questions based on the information from both articles and also mark
the supporting facts. The benchmark comes in two settings: We focus on the distractor

setting, where question and answer are accompanied by a context comprised of the two
answer source articles and eight similar articles retrieved by an information retrieval
system.

RECORD (Zhang et al. 2018) is automatically generated from news articles, as an
attempt to reduce bias introduced by human annotators. The benchmark entries are
comprised of an abstractive summary of a news article and a close-style query. The
query is generated by sampling from a set of sentences of the full article that share
any entity mention with the abstract and by removing that entity. In a final step, the
machine-generated examples were presented to crowd workers to remove noisy data.
The task is to predict the correct entity given the Cloze-style query and the summary.

MULTIRC (Khashabi et al. 2018) features passages from various domains such as
news, (children) stories, or textbooks. Those passages are presented to crowd workers
that are required to perform the following four tasks: (i) produce questions based mul-
tiple sentences from a given paragraph, (ii) ensure that a question cannot be answered
from any single sentence, (iii) generate a variable number of correct and incorrect an-
swers and (iv) verify the correctness of produced question and answers. This results in
a benchmark where the task is to predict a variable number of correct natural language
answers from a variable number of choices, given a paragraph and a question.

NEWSQA (Trischler et al. 2017), similarly to RECORD, is generated from news ar-
ticles, but by employing a crowd-sourcing pipeline instead of automated construction.
Question producing crowd workers were asked to formulate questions given headlines
and bullet-point summaries. A different set of answer producing crowd workers was
tasked to highlight the answer from the article full text or mark a question as unanswer-
able. A third set of crowd workers selected the best answer per question. The resulting
task is, given a question and a news article to predict a span-based answer from the
article.

DROP (Dua et al. 2019b) introduces explicit discrete operations to the realm of ma-
chine reading comprehension as models are expected to solve simple arithmetic tasks
(such as addition, comparison, counting, etc) in order to produce the correct answer.
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Table 3.2: Inter-Annotator agreement F1 scores, averaged for each dataset.

Dataset F1 Score
MSMARCO 0.86
HOTPOTQA 0.88
RECORD 0.73
MULTIRC 0.75
NEWSQA 0.87
DROP 0.85
Micro Average 0.82

The authors collected passages with a high density of numbers, NFL game summaries
and history articles and presented them to crowd workers in order to produce questions
and answers that fall in one of the aforementioned categories. A submission was only
accepted, if the question was not answered correctly by a pre-trained model that was
employed on-line during the annotation process, acting as an adversary. The final task
is, given question and a passage to predict an answer, either as a single or multiple
spans from the passage or question, generate an integer or a date.

3.3.2 Annotation Task

We randomly select 50 distinct question, answer and passage triples from the publicly
available development sets of the described datasets. Training, development and the
(hidden) test set are drawn from the same distribution defined by the data collection
method of the respective dataset. For those collections that contain multiple questions
over a single passage, we ensure that we are sampling unique paragraphs in order to
increase the variety of investigated texts.

The samples were annotated by the first author of this paper, using the proposed
schema. In order to validate our findings, we further take 20% of the annotated sam-
ples and present them to a second annotator. Since at its core, the annotation is a
multi-label task, we report the inter-annotator agreement by computing the (micro-
averaged) F1 score, where we treat the first annotator’s labels as gold. Table 3.2 reports
the agreement scores, the overall (micro) average F1 score of the annotations is 0.82,
which means that on average, more than two thirds of the overall annotated labels were
agreed on by both annotators. We deem this satisfactory, given the complexity of the
annotation schema.



62 CHAPTER 3. FRAMEWORK FOR EVALUATING MRC DATA

Redundancy

Lex
Entailm

ent
Dative

Synonym

Abbrev
iation

Symmetry

Nominalisa
tion

Genitiv
e

Voice

Restri
ctivity

Factivity

Coreference

Ellip
sis/

Implicit

Prepositi
on

Listi
ng

Scope

RelAdvApp
0

20

40

60

80

100

O
cc

ur
en

ce
s

in
%

of
sa

m
pl

es

MSMARCO HOTPOTQA RECORD
MULTIRC NEWSQA DROP

(a) Lexical (grey background), syntactic (white background) and discourse (blue background)
linguistic features.

Span

Paraphrasing

Unanswerable

Abstra
ction

0

20

40

60

80

100

O
cc

ur
en

ce
s

in
%

of
sa

m
pl

es

(b) Answer Type

Debatable
Wrong

0

10

20

30

(c) Correctness

Cultural

Politic
al

Technical

Domain Specific

Intuitiv
e

0

10

20

30

(d) Required External Knowledge

Bridge

Compariso
n

Constra
int

Interse
ction

Subtraction
Additio

n
Count

Ordering

Other Math
Negation

Con-/D
isju

nction

Quantifiers

Temporal
Spatial

Causal

By Exclusion

Retrie
val

0

20

40

60

80

100

O
cc

ur
en

ce
s

in
%

of
sa

m
pl

es

(e) Required operational, arithmetic and linguistic and other forms of Reasoning (grouped from
left to right)

Figure 3.3: Results of the application of the described qualitative framework to the
selected gold standards.
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3.3.3 Qualitative Analysis

We present a concise view of the annotation results in Figure 3.3. The full annotation
results can be found in Appendix D4. We centre our discussion around the following
main points:

Linguistic Features As observed in Figure 3.3a the gold standards feature a high
degree of Redundancy, peaking at 76% of the annotated HOTPOTQA samples and syn-
onyms and paraphrases (labelled Synonym), with RECORD samples containing 58% of
them, likely to be attributed to the elaborating type of discourse of the dataset sources
(encyclopedia and newswire). This is, however, not surprising, as it is fairly well
understood in the literature that current state-of-the-art models perform well on dis-
tinguishing relevant words and phrases from redundant ones (Seo et al. 2017). Addi-
tionally, the representational capability of synonym relationships of word embeddings
has been investigated and is well known (Chen et al. 2013). Finally, we observe the
presence of syntactic features, such as ambiguous relative clauses, appositions and ad-
verbial phrases (RelAdvApp 40% in HOTPOTQA and ReCoRd) and those introducing
variance, concretely switching between verbal and nominal styles (e.g. Nominalisation

10% in HOTPOTQA) and from passive to active voice (Voice, 8% in HOTPOTQA).
Syntactic features contributing to variety and ambiguity that we did not observe

in our samples are the exploitation of verb symmetry, the use of dative and genitive
cases or ambiguous prepositions and coordination scope (respectively Symmetry, Da-

tive, Genitive, Prepositions, Scope). Therefore we cannot establish whether models
are capable of dealing with those features by evaluating them on those gold standards.

Factual Correctness We identify three common sources that surface in different
problems regarding an answer’s factual correctness, as reported in Figure 3.3c and
illustrate their instantiations in Figures 3.4 and 3.5:

• Design Constraints: Choosing the task design and the data collection method
introduces some constraints that lead to factually debatable examples. For ex-
ample, a span might have been arbitrarily selected from multiple spans that po-
tentially answer a question, but only a single continuous answer span per ques-
tion is allowed by design, as observed in the NEWSQA and MSMARCO samples
(32% and 34% examples annotated as Debatable with 16% and 53% thereof

4Calculations and analysis code can be retrieved from https://github.com/schlevik/
dataset-analysis

https://github.com/schlevik/dataset-analysis
https://github.com/schlevik/dataset-analysis
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Wrong Answer 25%
Question: What is the cost of the project?
Expected Answer: 2.9 Bio $
Correct answer: 4.1 Bio $
Passage: At issue is the alternate engine for the Joint Strike Fighter platform, [. . . ]
that has cost taxpayers $1.2 billion in earmarks since 2004. It is estimated to cost
at least $2.9 billion more until its completion.
Answer Present 47%
Question: how long do you need to cook 6 pounds of pork in a roaster?
Expected Answer: Unanswerable
Correct answer: 150 min
Passage: The rule of thumb for pork roasts is to cook them 25 minutes per pound of
meat [. . . ]

Figure 3.4: Most frequently occurring factually wrong categories with an instantiating
example. Percentages are relative to the number of all examples annotated as Wrong
across all six gold standards.

exhibiting arbitrary selection, respectively). Sometimes, when additional pas-
sages are added after the annotation step, they can by chance contain passages
that answer the question more precisely than the original span, as seen in HOT-
POTQA (16% Debatable samples, 25% of them due to arbitrary selection). In
the case of MULTIRC it appears to be inconsistent, whether multiple correct
answer choices are expected to be correct in isolation or in conjunction (28%
Debatable with 29% of them exhibiting this problem). This might provide an
explanation to its relatively weak human baseline performance of 84% F1 score
(Khashabi et al. 2018).

• Weak Quality assurance: When the (typically crowd-sourced) annotations are
not appropriately validated, incorrect examples find their way into the gold stan-
dards. This typically results in factually wrong expected answers (i.e. when
a more correct answer is present in the context) or a question is expected to
be Unanswerable, but is actually answerable from the provided context. The
latter is observed in MSMARCO (83% of examples annotated as Wrong) and
NEWSQA, where 60% of the examples annotated as Wrong are Unanswerable

with an answer present.

• Arbitrary Precision: There appears to be no clear guideline on how precise the
answer is expected to be, when the passage expresses the answer in varying
granularities. We annotated instances as Debatable when the expected answer
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Arbitrary selection 25%
Question: what did jolie say?
Expected Answer: she feels passionate about Haiti
Passage: Angelina Jolie says she feels passionate about Haiti, whose ”extraordi-
nary” people are inspiring her with their resilience after the devastating earthquake
one month ago. During a visit to Haiti this week, she said that despite the terrible
tragedy, Haitians are dignified and calm.
Arbitrary Precision 33%
Question: Where was the person killed Friday?
Expected Answer: Arkansas
Passage: The death toll from severe storms in northern Arkansas has been lowered
to one person [. . . ]. Officials had initially said three people were killed when the
storm and possible tornadoes walloped Van Buren County on Friday.

Figure 3.5: Most frequently occurring debatable categories with an instantiating ex-
ample. Percentages are relative to the number of all examples annotated as Debatable
across all six gold standards.

was not the most precise given the context (44% and 29% of Debatable instances
in NEWSQA and MULTIRC, respectively).

Semantics-altering grammatical modifiers We took interest in whether any of the
benchmarks contain what we call distracting lexical features (or distractors): gram-
matical modifiers that alter the semantics of a sentence for the final task of answering
the given question while preserving a similar lexical form. An example of such fea-
tures are cues for (double) Negation (e.g., “no”, “not”), which when introduced in a
sentence, reverse its meaning. Other examples include modifiers denoting Restrictiv-

ity, Factivity and Reasoning (such as Monotonicity and Conditional cues). Examples
of question-answer pairs containing a distractor are shown in Table 3.6.

We posit that the presence of such distractors would allow for evaluating read-
ing comprehension beyond potential simple word matching. However, we observe no
presence of such features in the benchmarks (beyond Negation in DROP, RECORD

and HOTPOTQA, with 4%, 4% and 2% respectively). This results in gold standards
that clearly express the evidence required to obtain the answer, lacking more challeng-
ing, i.e., distracting, sentences that can assess whether a model can truly understand
meaning.

Other In the Figure 3.3e we observe that Operational and Arithmetic reasoning mod-
erately (6% to 8% combined) appears “in the wild”, i.e. when not enforced by the data
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Restrictivity Modification
Question: What was the longest touchdown?
Expected Answer: 42 yard
Passage: Brady scored a 42 yard TD. Brady almost scored a 50 yard TD.
Factivity Altering
Question: What are the details of the second plot on Alexander’s life?
(Wrong) Answer Choice: Callisthenes of Olynthus was definitely involved.
Passage: [. . . ] His official historian, Callisthenes of Olynthus, was implicated in the
plot; however, historians have yet to reach a consensus regarding this involvement.
Conditional Statement
Question: How many eggs did I buy?
Expected Answer: 2.
Passage: [. . . ] I will buy 4 eggs, if the market sells milk. Otherwise, I will buy 2
[. . . ]. The market had no milk.

Figure 3.6: Example of semantics altering lexical features.

design as is the case with HOTPOTQA (80% Operations combined) or DROP (68%
Arithmetic combined). Causal reasoning is (exclusively) present in MULTIRC (32%),
whereas Temporal and Spatial reasoning requirements seem to not naturally emerge in
gold standards. In RECORD, a fraction of 38% questions can only be answered By Ex-

clusion of every other candidate, due to the design choice of allowing questions where
the required information to answer them is not fully expressed in the accompanying
paragraph.

Therefore, it is also a little surprising to observe that RECORD requires external
resources with regard to knowledge, as seen in Figure 3.3d. MULTIRC requires techni-
cal or more precisely basic scientific knowledge (6% Technical/Scientific), as a portion
of paragraphs is extracted from elementary school science textbooks (Khashabi et al.
2018). Other benchmarks moderately probe for factual knowledge (0% to 4% across
all categories), while Intuitive knowledge is required to derive answers in each gold
standard.

It is also worth pointing out, as done in Figure 3.3b, that although MULTIRC and
MSMARCO are not modelled as a span selection problem, their samples still contain
50% and 66% of answers that are directly taken from the context. DROP contains
the biggest fraction of generated answers (60%), due to the requirement of arithmetic
operations.

To conclude our analysis, we observe similar distributions of linguistic features and
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Table 3.3: (Average) Precision, Recall and F1 score within the 95% confidence interval
of a linear classifier optimised on lexical features for the task of predicting supporting
facts.

Dataset Precision Recall F1
MSMARCO 0.07 ±.04 0.52 ±.12 0.11 ±.04
HOTPOTQA 0.20 ±.03 0.60 ±.03 0.26 ±.02
RECORD 0.28 ±.04 0.56 ±.04 0.34 ±.03
MULTIRC 0.37 ±.04 0.59 ±.05 0.40 ±.03
NEWSQA 0.19 ±.04 0.68 ±.02 0.26 ±.03
DROP 0.62 ±.02 0.80 ±.01 0.66 ±.02

reasoning patterns, except where there are constraints enforced by dataset design, an-
notation guidelines or source text choice. Furthermore, careful consideration of design
choices (such as single-span answers) is required, to avoid impairing the factual cor-
rectness of datasets, as pure crowd-worker agreement seems not sufficient in multiple
cases.

3.3.4 Quantitative Results

Lexical overlap We used the scores assigned by our proposed set of metrics (dis-
cussed in Section 3.2.1 “Dimensions of Interest: Complexity”) to predict the support-
ing facts in the gold standard samples (that we included in our manual annotation).
Concretely, we used the following five features capturing lexical overlap: (i) the num-
ber of words occurring in sentence and question, (ii) the length of the longest n-gram
shared by sentence and question, whether a (iii) uni- and (iv) bigram from the question
is unique to a sentence, and (v) the sentence index, as input to a logistic regression
classifier. We optimised on each sample leaving one example for evaluation. We com-
pute the average Precision, Recall and F1 score by means of leave-one-out validation
with every sample entry. The averaged results after 5 runs are reported in Table 3.3.

We observe that even by using only our five features based lexical overlap, the
simple logistic regression baseline is able to separate out the supporting facts from the
context to a varying degree. This is in line with the lack of semantics-altering gram-
matical modifiers discussed in the qualitative analysis section above. The classifier
performs best on DROP (66% F1) and MULTIRC (40% F1), which means that lexi-
cal cues can considerably facilitate the search for the answer in those gold standards.
On MULTIRC, Yadav, Bethard, and Surdeanu (2019) come to a similar conclusion, by
using a more sophisticated approach based on overlap between question, sentence and
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answer choices.

Surprisingly, the classifier is able to pick up a signal from supporting facts even on
data that has been pruned against lexical overlap heuristics by populating the context
with additional documents that have high overlap scores with the question. This results
in significantly higher scores than when guessing randomly (HOTPOTQA 26% F1,
and MSMARCO 11% F1). We observe similar results in the case the length of the
question leaves few candidates to compute overlap with 6.3 and 7.3 tokens on average
for MSMARCO and NEWSQA (26% F1), compared to 16.9 tokens on average for the
remaining four dataset samples.

Finally, it is worth mentioning that although the queries in RECORD are explicitly
independent from the passage, the linear classifier is still capable of achieving 34% F1
score in predicting the supporting facts.

However, neural networks perform significantly better than our admittedly crude
baseline (e.g. 66% F1 for supporting facts classification on HOTPOTQA (Yang et al.
2018)), albeit utilising more training examples, and a richer sentence representation.
This facts implies that those neural models are capable of solving more challenging
problems than simple “text matching” as performed by the logistic regression baseline.
However, they still circumvent actual reading comprehension as the respective gold
standards are of limited suitability to evaluate this (Min et al. 2019; Jiang and Bansal
2019). This suggests an exciting future research direction, that is categorising the scale
between text matching and reading comprehension more precisely and respectively
positioning state-of-the-art models thereon.

3.4 Related Work

Although not as prominent as the research on novel architectures, there has been steady
progress in critically investigating the data and evaluation aspects of NLP and machine
learning in general and MRC in particular. We identify four related research areas
below:

Adversarial Evaluation The authors of the ADDSENT algorithm (Jia and Liang
2017) show that MRC models trained and evaluated on the SQUAD dataset pay too
little attention to details that might change the semantics of a sentence, and propose a
crowd-sourcing based method to generate adversary examples to exploit that weakness.
This method was further adapted to be fully automated (Wang and Bansal 2018) and
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applied to different gold standards (Jiang and Bansal 2019). Our proposed approach
differs in that we aim to provide qualitative justifications for those quantitatively mea-
sured issues.

Sanity Baselines Another line of research establishes sane baselines to provide more
meaningful context to the raw performance scores of evaluated models. When remov-
ing integral parts of the task formulation such as question, the textual passage or parts
thereof (Kaushik and Lipton 2018) or restricting model complexity by design in order
to suppress some required form of reasoning (Chen and Durrett 2019), models are still
able to perform comparably to the state-of-the-art. This raises concerns about the per-
ceived benchmark complexity and is related to our work in a broader sense as one of
our goals is to estimate the complexity of benchmarks.

Benchmark evaluation in NLP Beyond MRC, efforts similar to ours that pursue
the goal of analysing the evaluation of established datasets exist in Natural Language
Inference (Gururangan et al. 2018; McCoy, Pavlick, and Linzen 2019). Their analyses
reveal the existence of biases in training and evaluation data that can be approximated
with simple majority-based heuristics. Because of these biases, trained models fail to
extract the semantics that are required for the correct inference. Furthermore, a fair
share of work was done to reveal gender bias in coreference resolution datasets and
models (Rudinger et al. 2018; Zhao et al. 2018; Webster et al. 2018).

Annotation Taxonomies Finally, related to our framework is research that intro-
duces annotation categories for gold standards evaluation. Concretely, we build our
annotation framework around linguistic features that were introduced in the GLUE
suite (Wang et al. 2018) and the reasoning categories introduced in the WORLDTREE

dataset (Jansen et al. 2016). A qualitative analysis complementary to ours, with focus
on the unanswerability patterns in datasets that feature unanswerable questions was
done by Yatskar (2019).

3.5 Conclusion

In this paper, we introduce a novel framework to characterise machine reading com-
prehension gold standards. This framework has potential applications when comparing



70 CHAPTER 3. FRAMEWORK FOR EVALUATING MRC DATA

different gold standards, considering the design choices for a new gold standard and
performing qualitative error analyses for a proposed approach.

Furthermore we applied the framework to analyse popular state-of-the-art gold
standards for machine reading comprehension. We reveal issues with their factual
correctness, show the presence of lexical cues and we observe that semantics-altering
grammatical modifiers are missing in all of the investigated gold standards. Studying
how to introduce those modifiers into gold standards and observing whether state-of-
the-art MRC models are capable of performing reading comprehension on text con-
taining them, is a future research goal.

A future line of research is to extend the framework to be able to identify the dif-
ferent types of exploitable cues such as question or entity typing and concrete overlap
patterns. This will allow the framework to serve as an interpretable estimate of reading
comprehension complexity of gold standards. Finally, investigating gold standards un-
der this framework where MRC models outperform the human baseline (e.g. SQUAD)
will contribute to a deeper understanding of the seemingly superb performance of deep
learning approaches on them.



Chapter 4

Semantics Altering Modifications for
Evaluating Comprehension
in Machine Reading1

Abstract

Advances in NLP have yielded impressive results for the task

of machine reading comprehension (MRC), with approaches having

been reported to achieve performance comparable to that of humans.

In this paper, we investigate whether state-of-the-art MRC models are

able to correctly process Semantics Altering Modifications (SAM):

linguistically-motivated phenomena that alter the semantics of a sen-

tence while preserving most of its lexical surface form. We present

a method to automatically generate and align challenge sets featuring

original and altered examples. We further propose a novel evaluation

methodology to correctly assess the capability of MRC systems to

process these examples independent of the data they were optimised

on, by discounting for effects introduced by domain shift. In a large-

scale empirical study, we apply the methodology in order to evaluate

extractive MRC models with regard to their capability to correctly

process SAM-enriched data. We comprehensively cover 12 different

state-of-the-art neural architecture configurations and four training

datasets and find that – despite their well-known remarkable perfor-

mance – optimised models consistently struggle to correctly process

1This chapter follows the publication “Semantics Altering Modifications for Evaluating Compre-
hension
in Machine Reading” (Schlegel, Nenadic, and Batista-Navarro 2020b),
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P: 1 After the kickoff Naomi Daniel...
(B) Original: curled in
(I1) Modal negation: couldn’t curl in
(I2) Adverbial Modification: almost curled in
(I3) Implicit Negation: was prevented from curling in
(I4) Explicit Negation: didn’t succeed in curling in
(I5) Polarity Reversing: lacked the nerve to curl in
(I6) Negated Polarity Preserving: wouldn’t find the opportunity to curl in

...a goal from 26 metres away following a decisive counter-attack. 2 Then
Amanda Collins added more insult to the injury when she slotted in from 23 metres
after Linda Burger’s soft clearance. [...]
Q: Who scored the farthest goal?
A: Naomi Daniel A with SAM: Amanda Collins

Figure 4.1: Categories of SAM used in this paper with their implications on answer-
ing the given question (Q). Modifying the original “Baseline” passage (B) by se-
lecting any “Intervention” category (I1)−(I6), or removing the first sentence (“Con-
trol”) changes the correct answer from “Naomi Daniel” (A) located in sentence 1© to
“Amanda Collins” (A with SAM) located in sentence 2©.

semantically altered data.

4.1 Introduction

Machine Reading Comprehension (MRC), also commonly referred to as Question An-
swering, is defined as finding the answer to a natural language question given an ac-
companying textual context. State-of-the-art approaches build upon large transformer-
based language models (Vaswani et al. 2017) that are optimised on large corpora in
an unsupervised manner (Devlin et al. 2019) and further fine-tuned on large crowd-
sourced task-specific MRC datasets (Rajpurkar et al. 2016; Yang et al. 2018; Trischler
et al. 2017). They achieve remarkable performance, consistently outperforming human
baselines on multiple reading comprehension and language understanding benchmarks
(Lan et al. 2020; Raffel et al. 2019).

More recently, however, research on “data biases” in NLP suggests that these task-
specific datasets exhibit various cues and spurious correlations between input and ex-
pected output (Gururangan et al. 2018; Poliak et al. 2018). Indeed, data-driven ap-
proaches such as the state-of-the-art models (described above) that are optimised on
these datasets learn to exploit these (Jia and Liang 2017; McCoy, Pavlick, and Linzen
2019), thus circumventing the actual requirement to perform comprehension and un-
derstanding.
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For a simplified example, consider the question “Who scored the farthest goal?”

illustrated in Figure 4.1. If a model is only exposed to examples where the accompa-
nying passage contains sentences similar to “X scored a goal from Y metres” during
training, a valid approximating decision based on this information could be similar to
“select the name next to the largest number and the word goal” without processing the
full the passage.

Alarmingly, conventional evaluation methodology where the dataset is split ran-
domly into training and test data would not solve this issue. As both splits still stem
from the same generative process (typically crowd-sourcing), the same types of cues
are likely to exist in evaluation data, and a model can achieve high performance by
relying on exploiting them. These and other problems suggest that the actual reading
comprehension of state-of-the-art MRC models could be potentially over-estimated.

In an attempt to present a more realistic estimate, we focus on the capability to
correctly process Semantic Altering Modifications (SAM): minimal modifications to
the passage that change its meaning and therefore the expected answer. On the one
hand, it is important to know whether these modifications are processed correctly by
MRC models, as they drastically change the meaning, for example if “X almost scored
a goal from Y metres” then the goal effectively did not happen. On the other hand,
distinguishing between original and modified examples is hard by relying on lexical
cues only, as the modifications keep a similar lexical form. As a consequence, the
simplified decision rule hypothesised above would not apply anymore.

Manually curating evaluation data to incorporate SAM is expensive and requires
expert knowledge; also, the process must be repeated for each dataset resource (Gard-
ner et al. 2020). Automatically changing existing MRC data is not a feasible strat-
egy either, as the effects of a change on the meaning of the passage cannot be traced
through the process and will still need to be verified manually. Instead, in this paper
we propose a novel methodology to generate SAM MRC challenge sets. We employ
template-based natural language generation to maintain control over the presence of
SAM and their effect onto the expected answer to a given question.

A problem that arises when evaluating models on challenge sets that were opti-
mised on different training data, as it is the case in this paper, is the domain shift
between training and evaluation data. For example, a model trained to retrieve an-
swers from Wikipedia paragraphs might have never encountered a question involving
comparing distances. In this case, wrong predictions on SAM examples cannot be
contributed to the presence of SAM alone. To disentangle the effects introduced by
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the domain shift from the actual capability of correctly processing examples featur-
ing SAM, we introduce a novel evaluation methodology with a corresponding metric,
which we refer to as Domain Independent Consistency Evaluation (DICE). This allows
us to precisely measure the capability of MRC models to process SAM of interest, and
therefore, evaluate comprehension and language understanding that cannot be easily
circumvented by relying on superficial cues. In a large-scale empirical study, we eval-
uate the performance of state-of-the-art transformer-based architectures optimised on
multiple extractive MRC datasets. We find that—although approaches based on larger
language models tend to perform better—all investigated models struggle on the pro-
posed challenge set, even after discounting for domain shift effects.

4.2 Semantics Altering Modifications

The task of (extractive) Machine Reading Comprehension is formalised as follows:
given a question Q and a context P consisting of words p0 . . . pn, predict the start and
end indices s,e (where s < e) that constitute the answer span A = ps . . . pe in P. A
Semantics Altering Modification (SAM) refers to the process of changing answer A to
A′ 6= A by applying a modification to the accompanying context P. The rationale is
to create a new intervention instance (Q,P′,A′) that is lexically similar to the original
but has a different meaning and therefore a different expected answer for the same
question. Predicting both A and A′ given the question and the respective passages
becomes a more challenging task than predicting A alone, since it requires correctly
processing and distinguishing both examples. Due to their similarity, any simplifying
heuristics inferred from training data are more likely to fail.

Furthermore, this intuitive description aligns with one of the prevalent linguistic
definitions of modifiers as “an expression that combines with an unsaturated expres-
sion to form another unsaturated expression of the same [semantic] type” (McNally
2002). Particularly applicable to our scenario is the pragmatic or discourse-related
view, specifically the distinction between modifiers that contribute to the content of a
sentence with regard to a specific issue, and those that do not. In the context of MRC,
the issue is whether the modification is relevant to finding the answer A to the question
Q.

The linguistic literature is rich in reporting phenomena conforming with this defi-
nition. In this paper we explore negation (Morante and Daelemans 2012), (adverbial)
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restrictivity modification (Tenny 2000, Sec. 6), polarity reversing verbs and expres-
sions (Karttunen 1971, 2012) and expressions of implicit negation (Iyeiri 2010). The
categories with representative examples are shown in Figure 4.1 and labelled I1-I6.
They reflect our intuitive definition as they involve relatively small edits to the original
context, by inserting between one and four words that belong to the most frequent parts
of speech classes of the English language, i.e. adverbials, modals, verbs and nouns.
Note, however, that this selection is non-exhaustive. Other linguistic phenomena such
as privative adjectives (Pavlick and Callison-Burch 2016), noun phrase modification
(Stanovsky and Dagan 2016) or – if one were to expand the semantic types based
definition introduced above – corresponding discourse relations, such as Contrast or
Negative Condition (Prasad et al. 2008), or morphological negation constitute further
conceivable candidates. We leave it for future work to evaluate MRC on other types of
SAM.

4.3 Domain Independent Consistency Evaluation

Consistency on “contrastive sets” (Gardner et al. 2020) was recently proposed as a
metric to evaluate the comprehension of NLP models beyond simplifying decision
rules. A contrastive set is – similar to SAM – a collection of similar data points that
exhibit minimal differences such that the expected prediction (e.g. answer for MRC)
differs for each member. Consistency is then defined as the ratio of contrastive sets
where the model yielded a correct prediction for all its members to the total number of
contrastive sets.

This notion requires that evaluation examples stem from the same generative pro-
cess as the training data, making the process of finding contrastive sets dataset-depen-
dent. If the processes are different however, as it is the case with training set indepen-
dent challenge sets, this difference can be a confounding factor for wrong predictions,
i.e. a model might produce a wrong prediction because the input differs too much
from its training data and not solely because it was not capable of solving the inves-
tigated phenomenon. As we aim to establish an evaluation methodology independent
of training data, we propose the following approach in order to rightfully attribute the
capability to correctly process SAM even under domain shift.

We align each baseline MRC instance consisting of question, expected answer and
context triple Bi = (Qi,Ai,Pi) with an intervention instance Ii = (Qi,A′i,P

′
i ) s.t. A′i 6= Ai.

In practice we achieve this by inserting a SAM in the sentence of Pi that contains Ai
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in order to obtain P′i . We further align a control instance where we completely remove
the sentence that was modified in P′i , i.e. Ci = (Qi,A′i,P

′′
i ). Thus an aligned instance

consists of the triple (Bi, Ii,Ci) sharing the question Q. The answer A′ is equivalent for
both Ii and Ci. Examples for P,P′ and P′′ are shown in Figure 4.1 by selecting original
(B) for P, any of the alternatives (I1) through (I6) for P′ and completely removing the
first sentence for P′′.

The goal is to establish first, whether the model under evaluation “understood” the
question and the accompanying context. Namely, if the model predicted Ai and A′i
correctly given Qi,Pi and Qi,P′′i , respectively, we conclude that the domain shift is not
pivotal for the prediction performance of this particular instance, thus predicting the
correct answer A′i for Ii can be attributed to the model’s capability to correctly process
the SAM in P′i . Conversely, if the model fails to predict A′ we assume that the reason
for this is its incapability to process SAM (for this instance), regardless of the domain
shift.

Initial experiments showed that models sometimes struggle to predict the exact
span boundries of the expected answer while retrieving the correct information in prin-
ciple (e.g. predicting “from 26 metres” vs. the expected answer “26 metres”). There-
fore we relax the usual Exact Match measure EM to establish the correctness of a
prediction in the following way: rEMk(Â,A) = 1 if a Â has at most k words and A is
a substring of Â, and 0 otherwise, where Â = fθ(Q,P) is the answer prediction of an
optimised MRC model fθ given question Q and context P.

The metric DICE is the number of examples the model predicted correctly in their
baseline, intervention and control version divided by the number of those the model
predicted correctly for the baseline and control version. This is the ratio of those
modified instances that the model processed correctly regardless of the domain shift
introduced between training and evaluation data, and thus better reflects the capabil-
ity of processing SAM. Formally, for a challenge set N = {B,I ,C} consisting of N

baseline, intervention and control examples, let

B+ = {i | rEMk( fθ(Qi,Pi),Ai) = 1}i∈{1...N}

I+ = {i | rEMk( fθ(Qi,P′i ),A
′
i) = 1}i∈{1...N}

C+ = {i | rEMk( fθ(Qi,P′′i ),A
′
i) = 1}i∈{1...N}

(4.1)

denote the set of indices where an optimised model fθ predicted a correct answer for
baseline, intervention and control instances, respectively. Then
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B+

I+

C+

N

Figure 4.2: With circles B+,I+ and C+ from Eq. 4.1 representing instances that were
answered correctly in their baseline, intervention and control version, respectively and
square N representing the whole challenge set, DICE is the proportion of the star
covered area to the area covered by hexagons. Consistency, when defining contrastive
sets as {Bi, Ii}i∈{1...N} (Gardner et al. 2020) is the proportion of the grey area to the
area of the entire square.

DICE( fθ) =
|B+∩ I+∩C+|
|B+∩C+|

∈ [0,1]. (4.2)

A visual interpretation of this metric is given Figure 4.2.

An inherent limitation of challenge sets is that they bear negative predictive power
only (Feng, Wallace, and Boyd-Graber 2019). Translated to our methodology, this
means that while low DICE scores hint at the fact that models circumvent comprehen-
sion, high scores do not warrant the opposite, as a model still might learn to exploit
some simple decision rules in cases not covered by the challenge set. In other words,
while necessary, the capability of distinguishing and correctly processing SAM exam-
ples is not sufficient to evaluate reading comprehension.

A limitation specific to our approach is that it depends on a model’s capability
to perform under domain shift, at least to some extent. If a model performs poorly
because of insufficient generalisation beyond training data or if the training data are
too different from that of the challenge set, the sizes of B+,I+ and C+ decrease and
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therefore variations due to chance have a larger contribution to the final result. Con-
cretely, we found that if the question is not formulated in natural language, as is the
case for WIKIHOP (Welbl, Stenetorp, and Riedel 2018), or the context does not consist
of coherent sentences (with SEARCHQA (Dunn et al. 2017) as an example) optimised
models transfer poorly. Having a formalised notion of dataset similarity with respect
to domain transfer for the task of MRC would help articulate the limitations and appli-
cation scenarios of the proposed approach beyond pure empirical evidence.

4.4 SAM Challenge Set Generation

We now present the methodology for generating and modifying passages at scale. We
aim to generate examples that require “reasoning skills” typically found in state-of-
the-art MRC benchmarks (Sugawara et al. 2017; Schlegel et al. 2020). Specifically, we
choose to generate football match reports as it intuitively allows us to formulate ques-
tions that involve simple (e.g. “Who scored the first/last goal?”) and more complex
(e.g. “When was the second/second to last goal scored?”) linear retrieval capabilities,
bridging and understanding the temporality of events (e.g. “Who scored before/after

X was fouled?”) as well as ordering (e.g. “What was the farthest/closest goal?”) and
comparing numbers and common properties (e.g. “Who assisted the earlier goal, X or

Y?”). Answer types for these questions are named entities (e.g. players) or numeric
event attributes (e.g. time or distance).

To generate passages and questions, we pursue a staged approach, common in Nat-
ural Language Generation (Gatt and Krahmer 2018). Note that we choose a purely
symbolic approach over statistical approaches in order to maintain full control over the
resulting questions and passages as well as the implications of their modification for
the task of retrieving the expected answer. Our pipeline is exemplified in Figure 4.3
and consists of (1) content determination and structuring, followed by (2) content gen-
eration (as we generate the content from scratch) and finally (3) lexicalisation and
linguistic realisation combining templates and a generative grammar. Algorithm 1 de-
scribes the generation process in pseudo-code.

Content planning and generation The output of this stage is a structured report of
events that occurred during a fictious match, describing event properties such as ac-
tions, actors and time stamps. We generate events of the type “goal”, which are the
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Selected Content Plan
1 (Order (Distance (Modified Goal) 0)

2 (Order (Distance (Just Goal) 1)

Q (Argselect Max Goal Distance Actor)

Generated Events
1 {actor: p4, distance: 26, mod: I2 ...}
2 {actor: p2, distance: 23 ...}
A: p4 A’: p2

Chosen Templates (Simplified)
1 %Con.ADVP #Actor @SAM $V.Goal $PP.Distance...

2 %Con.ADVP #Actor %Con.VP> she $V.Score $PP.Distance...

Q Who scored the farthest goal ?

Generated Text
P: After the kickoff Naomi Daniel curled in a goal . . .
P′: After the kickoff Naomi Daniel almost curled in . . .
P′′: Then Amanda Collins added more insult to the . . .

Figure 4.3: Stages of the generative process that lead to the question answer and con-
text in Figure 4.1. The Content Plan describes the general constraints that the question
type imposes on the Events (both sentences must describe goal events, first sentence
must contain SAM, distance attribute must be larger in the modified sentence). Appro-
priate Templates are chosen randomly to realise the final Baseline P, Intervention P′

and Control P′′ version of the passage.

target of the generated questions and modifications, and “other” that diversify the pas-
sages. Furthermore each report is paired with a corresponding question, an indication
of which event is to be modified, and the corresponding answers.

The report is generated semi-randomly, as the requirement to generate instances
with a meaningful modification—i.e. actually changing the valid answer to the ques-
tion—imposes constraints that depend on the type of the question. We use a custom
vocabulary of data types to represent these constrains in form of a Content Plan. For
example, for the retrieval type question ”Who scored the farthest goal?” the report
must contain at least two events of the type “goal” and the distance attribute associated
with the event to be modified must be larger. In Figure 4.3 this ordering is expressed
by using the Order data type, that takes as arguments the ordering criterion (here
Distance), the event type (here Modified Goal and Just Goal) and the expected
ordering (here, the integers 0 and 1). By iterating over possible values these arguments
can take (e.g. different ordering criteria, different number of modified events, different
temporal order) and parameterising with the number of events to be generated and the
number of modifications to be inserted, we can efficiently generate large numbers of
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Algorithm 1: generate
Data: question types T , question type event constraints C, number of

examples per question type N, max. number of SAM per example S,
number of events per report n, Question templates TQ seed templates
TS, grammar G

B , C , I ←{},{},{}
foreach s ∈ 1 . . .S do

foreach i ∈ 1 . . . |T | do
plans← generate all possible event plans for Ti with n events and s

modifications s.t they satisfy Ci
plans← sample Ni w/o replacement from plans
reports← generate structured reports from each plan ∈ plans
used templates perms←{}
foreach r ∈ reports do

current templates perm← choose permutation of n from TS
according to r’s order of event types and not in
used templates perms

add current templates perm to used templates perms
P← ε

P′← ε

foreach template t ∈ current templates perm do
foreach symbol v ∈ t do

l = realise v using G with v as start symbol
append l to P′

if v is not SAM then
append l to P

end
end

end
P′′← copy P′ and remove modified sentences
Q,A,A′← realise question and answers given P,P′ and r
add (Q,A,P) to B , (Q,A′,P′) to I and (Q,A′,P′′) to C

end
end

end
return B , C , I

valid content plans that comply with the constraints imposed by the question type.

This structured event plan is then interpreted programmatically when the events are
generated and assigned their values, such as event type and properties. In the example
in Figure 4.3, the events are ordered by distance, so the actual distance property of
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event 1 (26) is higher than the distance property of event 2 (23). To prevent repetition,
we ensure that each content plan is unique in the final set of generated reports.

Realisation For the sake of simplicity, we choose to represent each event with a
single sentence, although it is possible to omit this constraint by using sentence aggre-
gation techniques and multi-sentence templates. Given a structured event description,
we randomly select a “seed” template suitable for the event type. Seed templates con-
sist of variables that are further substituted by expressions generated by the grammar
and properties of generates event, e.g. #Actor in Figure 4.3 is substituted by the name
of the corresponding event actors, “Naomi Daniel” and “Amanda Collins”. Thereby,
we distinguish between context-free and context-sensitive substitutions. For exam-
ple $PP.Distance in Figure 4.3 is substituted by a randomly generated prepositional
phrase describing the distance (e.g. “from 26 metes away”) regardless of its position
in the final passage. %Con.ADVP in the same figure is substituted by an expression
that connects to the previous sentence and depends on its content. For “After the kick-

off. . . ” can only appear in the first sentence of the paragraph, the same expression is
evaluated to “Then. . . ” in the next sentence. Finally, in case we are generating a mod-
ified passage, we insert the modifier from the list of possible alternatives according to
its corresponding position in the template. This ensures that the generated sentence is
grammatically correct even after the insertion2.

Similarly to the content generation, we ensure that the same template is not used
more than once per report and the permutation of templates used to realise a report is
unique in the final set of realised reports. In the case we generate data for both training
and evaluation purposes we use distinct sets of “seed” templates, in order to ensure
that the models do not perform well by just memorising the templates.

Data description The challenge set used in the experiments consists of 4200 aligned
baseline, intervention and control examples generated using the above process. The
modified intervention examples contain between one and three SAM from the six cat-
egories described earlier in Section 4.2. The “seed” templates and production rules
of the grammar used for generation were obtained by scraping football match reports

2We perform some simple post-processing where necessary, e.g. changing the following verb’s
tense in case we insert a modifier such as “couldn’t”



82 CHAPTER 4. SAM FOR MRC

Table 4.1: Detailed breakdown of measures used to obtain the final Naturality metric
for the evaluation of the generated data.

Measure SAM NFL
positive correlation ↑
m1: Adjacent sentence w2v similarity 0.58 0.67
negative correlation ↓
m2: Type-token ratio 0.72 0.66
m3: Adjacent sentence verb overlap 0.17 0.24
m4: Pronoun-noun-ratio 0.07 0.05

from news and Wikipedia world cup finals websites34. They were automatically pro-
cessed with the AllenNLP constituency parser5 and manually arranged by their se-
mantic content to form the generative grammar. Sentences were processed by the
AllenNLP NER 6 and SRL 7 tools to substitute semantic roles of interest (e.g. player
names, timestamps, verbs describing relevant actions) with variables, the output was
manually verified and curated, resulting in 25 seed templates and a generative grammar
with 230 production rules. Using them, we can realise an arbitrary event in 4.8×106

lexically different ways; for a specific event the number is approx. 7.8× 105 on av-
erage (the difference is due to context-sensitive parts of the grammar). The reports
consist of six events and sentences, the average length of a realised passage is 174
words, averaging 10.8 distinct named entities and 6.9 numbers as answer candidates.

To estimate how realistic the generated MRC data is, we compare the paragraphs to
the topically most similar MRC data: the NFL subset of the DROP dataset (Dua et al.
2019b). We measure the following two metrics. Lexical Similarity is the estimated Jac-
card similarity between two paragraphs, i.e. the ratio of overlapping words, with lower
scores indicating higher (lexical) diversity. As a rough estimate of Naturality, we mea-
sure the global and sentence-level indices that were reported to correlate with human
judgements of writing quality by Crossley, Kyle, and McNamara (2016) and Crossley,
Kyle, and Dascalu (2019). We define the final Naturality metric as a combination of
these measures. For simplicity we use a simple average:

Naturality =
m1 +(1−m2)+(1−m3)+(1−m4)

4
(4.3)

3articles appearing under https://www.theguardian.com/tone/matchreports
4for example https://en.wikipedia.org/wiki/2006_FIFA_World_Cup_Final
5https://demo.allennlp.org/constituency-parsing
6https://demo.allennlp.org/named-entity-recognition
7https://demo.allennlp.org/semantic-role-labeling

https://www.theguardian.com/tone/matchreports
https://en.wikipedia.org/wiki/2006_FIFA_World_Cup_Final
https://demo.allennlp.org/constituency-parsing
https://demo.allennlp.org/named-entity-recognition
https://demo.allennlp.org/semantic-role-labeling
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Table 4.2: Aggregated scores for the data quality evaluation of the generated data, in
comparison with the NFL subset of the DROP dataset. ↑ means higher is better, ↓
means lower is better.

Data Lex. Similarity ↓ Naturality ↑
SAM (n = 200) 0.22 0.65
NFL (n = 188) 0.16 0.68

where m1...m4 are the correlating indices described in further detail in Table 4.1. Note
that we do not include intra-paragraph level measures, despite the fact that they are
reported to correlate better with quality judgements. The reason for this is that both
our generated passages and the reference DROP NFL data consist of a single paragraph
only. The overall results are shown in Table 4.2 and the breakdown by index is shown
in Table 4.1. While not quite reaching the reference data due to its template-based
nature we conclude that the generated data is of sufficient quality for our purposes.

Finally, Table 4.3 shows the effect of randomness on the metrics discussed in this
chapter. We measure the average result of 5 runs and report the standard deviation. As
can be seen, for the data metrics of Lexical Similarity and Naturality as well as for the
rEM5 score, the impact of randomness is negligible. For the DICE score, the effect is
more noticeable for lower scores, a limitation described in Section 4.3.

4.5 Experiments Setup

Broadly, we pursue the following question:

How well does MRC perform on Semantic Altering Modifications?

In this study we focus our investigations on extractive MRC where the question is
in natural language, the context is one or more coherent paragraphs and the answer is a
single continuous span to be found within the context. To that end, we sample state-of-
the-art (neural) MRC architectures and datasets and perform a comparative evaluation.
Scores of models with the same architecture optimised on different data allow to com-
pare how much these data enable models to learn to process SAM, while comparing
models with different architecture optimised on the same data hints to which extent
these architectures are able to obtain this capability from data. Below we outline and
motivate the choices of datasets and models used in the study.
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Table 4.3: Measures used in this chapter averaged over 5 runs where the challenge set
was generated from different random seeds. Mean and standard deviation are reported.

Metric Mean Std. dev.
Diversity 0.1642 0
Naturality 0.66 0.003
rEM5 on B (|B|= 4200) of bert-base optimised on SQUAD 0.19 0.006
DICE score of bert-base optimised on SQUAD 0.16 0.023

Datasets We select the following datasets in an attempt to comprehensively cover
various flavours of state-of-the-art MRC consistent with our definition above.

• SQUAD (Rajpurkar et al. 2016) is a widely studied dataset where the human
baseline is surpassed by the state of the art.

• HOTPOTQA (Yang et al. 2018) in the “distractor” setting requires information
synthesis from multiple passages in the context connected by a common entity
or its property.

• DROP (Dua et al. 2019b) requires performing simple arithmetical tasks in order
to predict the correct answer.

• NEWSQA (Trischler et al. 2017) contains questions that were created without
having access to the provided context. The context is a news article, different
from the other datasets where contexts are Wikipedia excerpts.

Similar to Talmor and Berant (2019) we convert the datasets into the same format
for comparability and to suit the task definition of extractive MRC. For HOTPOTQA we
concatenate multiple passages into a single context, while for DROP and NEWSQA
we only include examples where the question is answerable and the answer is a contin-
uous span in the paragraph, and refer to them as DROP’ and NEWSQA’, respectively.

Models The respective best-performing models on these datasets are all employing
a large transformer-based language model with a task-specific network on top. Note
that we do not use architectures that make dataset-specific assumptions (e.g. “Multi-
hop” for HOTPOTQA) in order to maintain comparability of the architectures across
datasets. Instead, we employ a linear layer as the most generic form of the task-specific
network (Devlin et al. 2019). Following common practice, we concatenate the question
and context, and optimise the parameters of the linear layer together with those of the
language model to minimise the cross-entropy loss between the predicted and expected
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start and end indices of the answer span (and the answer sequence for the generative
model).

We are interested in the effects of various improvements that were proposed for the
original BERT transformer-based language model (Devlin et al. 2019). Concretely, we
compare

• the effects of more training data and longer training for the language model, as
is the case with the XLNet and RoBERTa language models (Yang et al. 2019;
Liu et al. 2019d)

• parameter sharing between layers of the transformer, as is done with the AL-
BERT language model (Lan et al. 2020)

• utilising a unifying sequence-to-sequence interface and reformulating extractive
MRC as text generation conditioned on the question and passage, e.g. BART
(Lewis et al. 2020) or T5 (Raffel et al. 2019)).

We evaluate different model size configurations, ranging from base (small for T5) to
large (and xl and xxl for ALBERT). The size denotes specific configurations of the
transformer architecture, such as the number of the self-attention layers and attention
heads and the dimensionality of hidden vectors. For an in-depth discussion please refer
to Devlin et al. (2019) and the corresponding papers introducing the architectures.
For comparison, we also include the non-transformer based BiDAF model (Seo et al.
2017). Finally, we train a model of the best performing architecture as determined by
the experiments on a combination of all four datasets (denoted by the best performing
model ${best} with the comb suffix—${best}-comb) to investigate the effects of
increasing training data diversity. For this, we sample and combine 22500 instances
from all four datasets to obtain training set that is similar in size to the others. The final
set of models investigates consists of the models reported in Figure 4.4 on page 88.

Baselines We implement a random baseline that chooses an answer candidate from
the pool of all named entities and numbers, and an informed baseline that chooses
randomly between all entities matching the expected answer type (e.g. person for
“Who” questions). Finally, in order to investigate whether the proposed challenge set
is generally solvable for the current iteration of MRC, we train a bert-base model on
12000 aligned baseline and intervention instances, each. We refer to this baseline as
learned. We train two more bert-base partial baselines, masked-q and masked-p
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on the same data where, respectively, the question and passage tokens (except for an-
swer candidates) are replaced by out-of-vocabulary tokens. Our motivation for doing
this is to estimate the proportion of the challenge set that can be solved due to regular-
ities in the data generation method, regardless of the realised lexical form to provide
more context to the performance of the learned baseline. The training of the base-
lines is performed in the same way as described above. We evaluate the baselines on
4200 aligned baseline, intervention and control challenge set instances and report the
average rEM5 score.

Data preparation and training details For HOTPOTQA we concatenate multiple
passages and their titles, and prepend them with the [text] and [title] tokens,
respectively. We further prepend the input with yes and no tokens, as some examples
require this as answer. Following Devlin et al. (2019), we represent the question and
context as a single sequence instance, separated by the [SEP] token. The maximal size
of this input sequence is 384 (subword) tokens. Passages exceeding this length are split
in multiple sequences each prepended by the question. The stride (overlap between
subsequent splits of a passage) is 128 tokens. Sequences shorter than 384 are padded
to maximal length. The (softmax over the) task specific layer outputs the probability
distributions of tokens being the start or end index, respectively. The training objective
is to minimise the cross-entropy loss between the logits of the final layer and the correct
start and end indices. During inference we select the start and end index pair (s,e) with
the maximum score s+ e with s > e, e− s <= max_answer_length and neither s nor
e being indices of the SEP or PAD tokens. In case the input was split, we select the pair
with the highest score across all corresponding inputs.

For the generative T5 encoder-decoder model we use a similar approach. We con-
catenate the question and context into a single sequence of maximal length of 512
tokens for SQUAD and DROP’, 1024 for NEWSQA’ and 2048 for HOTPOTQA. We
use the encoder to encode this sequence and use its hidden state as the initial repre-
sentation for the decoder to generate a sequence of tokens as the answer. The training
objective is to minimise the cross-entropy loss between the predicted tokens and the
vocabulary indices of the expected answer. Similarly, during inference we iteratively
generate a sequence of a maximum of max_answer_length using the hidden state of
the encoder after encoding the question and passage for the first token and the hidden
state of the decoder thereafter.

We implement the training and inference in PyTorch 1.6.0 (Paszke et al. 2017). We
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use the pre-trained language models available in the transformers8 library. We train
the bert, roberta and albert models on 4 Nvidia V100 GPUs with 16 GB of RAM
using data parallelism for the training on SQUAD and distributed training for the other
datasets.

The T5 models were trained using a single Nvidia V100 GPU, except when training
the t5-large model, we employed 4-way Model Parallelism (i.e. spreading different
parameters across multiple GPUs) for HOTPOTQA and 2-way model parallelism for
NewsQA’, because of GPU memory constraints.

We fix the random seed to maintain deterministic behaviour and the relevant hyper-
parameters used for training are as follows:

• Batch size: employing (distributed) data parallelism, mixed precision and gradi-
ent accumulation we use a batch-size of 210. Note that due to this combination,
the reported results on the development sets are slightly lower than what is re-
ported in the literature (e.g. up to 3 points lower F1 score for bert-base and less
than 1 point lower F1 score for albert-xxlarge). Given the training speed-up
we obtain and the somewhat orthogonal goal of our study, we deem this perfor-
mance loss acceptable.

• Learning Rate: We utilise the default learning rate of 5−5 that was reported
to work best for the transformer training. For t5 we found the learning rate of
0.001 used in the original experiments to work best. In both cases, we found
that linearly decaying the learning rate to 0 over the course of the training is
beneficial.

• Train Epochs: We train on SQUAD for 3 training epochs, for 2 epochs on
HOTPOTQA for 4 epochs on NEWSQA’ and for 12 epochs on DROP’. This
is to ensure that the models across the different datasets have a roughly equal
computational budget as the datasets vary in size and context length.

• Maximal answer length: We use max_answer_length=30 when obtaining pre-
dictions on the original datasets and max_answer_length=10 for predictions on
the challenge set, because the challenge set answers are generally shorter.

The BiDAF model was trained using the AllenNLP framework using their released
configuration file9.

8https://github.com/huggingface/transformers
9https://raw.githubusercontent.com/allenai/allennlp-models/v1.0.0/training config/rc/bidaf.jsonnet
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Baseline B I C
learned 81±2 79±2 76±2
masked-q 20±2 28±2 26±1
masked-p 29±1 5±1 1±1
random 6±1 5±1 8±1
informed 14±1 14±1 26±2

Table 4.4: Percentage of correct predictions of the introduced baselines under the rEM5
metric on aligned baseline B , intervention I and control C sets.

4.6 Results and Discussion

We present and discuss the main findings of our study here. For the obtained DICE

scores we report the error margin as a confidence interval at α = 0.05 using asymptotic
normal approximation. Any comparisons between two DICE scores reported in this
section are statistically significant at α = 0.05 as determined by Fisher’s exact test.

SAM is learnable. As expected, the learned baseline achieves high accuracy on our
challenge set, with 81% and 79% correctly predicted instances for baseline and inter-
vention examples, respectively, as seen in Table 4.4. The results are in line with similar
experiments on Recognising Textual Entailment (RTE) and sentiment analysis tasks
which involved aligned counterfactual training examples (Kaushik, Hovy, and Lipton
2020). They suggest that neural networks are in fact capable of learning to recognise
and correctly process examples with minimal yet meaningful differences such as SAM
when explicitly optimised to do so. Some part of this performance is to be attributed to
exploiting the regularity of the generation method rather than processing the realised
text only, however, as the partial baselines perform better than the random baselines.
This is further indicated by the slightly lower performance on the control set, where
due to deletion the number of context sentences is different compared to the baseline
and intervention sets.

We note that the learned model does not reach 100% EM score on this compara-
tively simple task, possibly due to the limited data diversity imposed by the templates.
Using more templates and production rules and a larger vocabulary when generating
the challenge set would further enhance the diversity of the data.

Pre-trained models struggle. Figure 4.4 reports the results of evaluating state-of-the-
art MRC. All optimised models struggle to succeed on our challenge set, with the best
DICE score of 40 achieved by albert-xlarge when trained on DROP’. There is a
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showing the correlation between the (logarithmic) model size and the score.

log-linear correlation between the effective size of the language model (established by
counting the shared parameters separately for each update per optimisation step) and
the SAM performance with Spearman’s r = 0.93. This correlation is visualised in
Figure 4.5.

Besides the model size, we do not find any contribution that lead to a considerable
improvement in performance of practical significance. We note that simply increasing
the data diversity while keeping the training set size appears not beneficial, as the score
of albert-xl-comb that was optimised on the combination of all four datasets is lower
than the average score of the corresponding albert-xl model.

A detailed breakdown of performance by SAM category is shown in Table 4.5. The
easiest category to process is I6: Explicit negation, with all optimised models scoring
26±1.4 on average. The models struggle most with I2: Adverbial Modification, with
an average DICE score of 14± 1 . A possible reason is that this category contains
degree modifiers, such as “almost”. While they alter the semantics in the same way as
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SAM Category Average DICE
Modal negation 20±1.3
Adverbial Modification 14±1.1
Implicit Negation 20±1.4
Explicit Negation 26±1.4
Polarity Reversing 18±1.3
Negated Polarity Preserving 23±1.5

Table 4.5: Average performance on the challenge set, by SAM category.

other categories for our purposes, generally they act as a more nuanced modification
(compare e.g. “almost” with “didn’t”). Finally, we note that the performance scales
negatively with the number of SAM present in an example. The average DICE score
on instances with a single SAM is 23±0.9, while on instances with the maximum of
three SAM it is 16±0.8 (and 19±1.0 for two SAM). This is reasonable, as more SAM
requires to process (and discard) more sentences, giving more opportunities to err.

We highlight that the models optimised on HOTPOTQA and DROP’ perform slightly
better than models optimised on SQUAD and NEWSQA’ (on average 20% vs 18% and
17%, respectively). This suggests that exposing models to training data that require
more complex (e.g. “multihop” and arithmetic) reasoning to deduce the answer, as
opposed to simple predicate-argument structure-based answer retrieval (Schlegel et al.
2020), has a positive effect on distinguishing and correctly processing lexically similar
yet semantically different instances.

Small improvements can be important. Our results indicate that small differences
at the higher end of the performance spectrum can be of practical significance for the
comprehension of challenging examples, such as SAM. Taking albert as an exam-
ple, the relative performance improvements between the base and xxl model when
(macro) averaged over the EM and F1 scores on the corresponding development sets
are 15% and 13%, respectively, while the relative difference in average DICE score
is 93%. This is likely due to a share of “easy” examples in MRC evaluation data
(Sugawara et al. 2018) that artificially bloat the (lower-end) performance scores to an
extent.

Meaningful training examples are missing. One possible explanation for low scores
could be that the models simply never encountered the expressions we use to modify
the passages and thus fail to correctly process them. To investigate this claim, we count
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Table 4.6: Annotation schema used to investigate the presence of meaningful adverbial
modification in the training data of the datasets used in the experiments and its results.
# denotes the absolute number of occurrences while % denotes the percentage relative
to all occurrences.

Label Description # %
Altering Removing the matched expression does change the

expected answer
1 0.15 %

Nonaltering Removing the matched expression does not change
the expected answer

522 80.68%

PartOf The matched expression is part of the question or
expected answer

61 9.45%

Opposite The expected answer ignores the expression (e.g.
when for the Question “What fraction did [...]” and
the answer sentence “Nearly half of [...]” the ex-
pected answer is “half” rather than “nearly half”)

27 4.17 %

BadExample The match was erroneous (e.g. if “all but” was used
in the sense “every single one except” rather than
“almost”)

36 5.56%

the occurrences of the expressions of the worst performing category overall, I2: Ad-

verbial Modification. The expressions appear in 5%,14%,5% and 22% of the training
passages of SQUAD, HOTPOTQA, DROP’ and NEWSQA’ respectively, showing that
models do encounter them during task-specific fine-tuning (not to mention during the
language-model pre-training). It is more likely that the datasets lack examples where

these expressions modify the semantics of the passage in a meaningful way, changing

the expected answer when present (Schlegel et al. 2020).

To investigate this claim further, we sampled 100 passages from each dataset used
for training in the experiments where the expressions “almost”, “nearly” and “all but”
from the category I2: Adverbial Modification were found in the passage within 100
characters of the expected answer. Because the datasets (except HOTPOTQA) feature
more than one question per passage, the overall number of questions for annotation was
647. The examples were annotated by the thesis author. Briefly speaking, the task was
to investigate whether the presence of the word had (Altering) or had no (Nonaltering)
impact on the expected answer. This was determined by removing the modifier and
observing whether that would change the answer to the question. Furthermore, we an-
notated whether the modifier was part of the expected answer (PartOf ) or whether the
expected answer annotation ignores the presence of the modifier (Opposite). Matching
errors were annotated as well (BadExample). The annotation schema and the results
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are shown in Table 4.6. 20% of the passages were co-annotated by a second anno-
tator, the inter-annotator agreement as per Cohen’s κ was 0.82. The disagreements
concerned the categories BadExample and Nonaltering, with some of the labels being
assigned differently by the two annotators. Besides these two categories the agreement
score was in fact 1.0.

This annotation yielded only one case which we can thus consider as a naturally
occurring SAM. Worse yet, in 4% of the cases (Opposite) the expected answer ignores
the presence of the SAM. This lends further credibility to the hypothesis that current
MRC struggles at distinguishing examples with minimal yet meaningful changes such
as SAM, if not explicitly incentivised during training.

An analysis of models’ errors suggests a similar conclusion: Examining wrong
intervention predictions for those cases where the answers for baseline and control
were predicted correctly, we find that in 82%±1% of those cases the models predict the
baseline answer. The models thus tend to ignore SAM, rather than being “confused”
by their presence (as if never encountered during training) and predicting a different
incorrect answer.

4.7 Related work

Systematically modified MRC data can be obtained by rewriting questions using rule-
based approaches (Ribeiro, Singh, and Guestrin 2018; Ribeiro, Guestrin, and Singh
2019) or appending distracting sentences, e.g. by paraphrasing the question (Jia and
Liang 2017; Wang and Bansal 2018), or whole documents (Jiang and Bansal 2019) to
the context. Adversarial approaches with the aim to “fool” the evaluated model, e.g.
by applying context perturbations (Si et al. 2020) fall into this category as well. These
approaches differ from ours, however, in that they aim to preserve the semantics of
the modified example, therefore the expected answer is unchanged, but the findings
are similar: models struggle to capture the semantic equivalence of examples after
modification, and rely on lexical overlap between question and passage (Jia and Liang
2017). Our approach explores a complimentary direction by generating semantically
altered passages that lead to a different answer.

Using rule-based Natural Language Generation (NLG) techniques for controlled
generation of MRC data was employed to obtain stories (Weston et al. 2015) that aim
to evaluate the learnability of specific reasoning types, such as inductive reasoning or
entity tracking. Further examples are TextWorld (Côté et al. 2018), an environment
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for text-based role playing games with a dataset where the task is to answer a question
by interactively exploring the world (Yuan et al. 2019b) and extending datasets with
unanswerable questions (Nakanishi, Kobayashi, and Hayashi 2018). Similar to our
approach, these generation methods rely on symbolic approaches to maintain control
over the semantics of the data.

Beyond MRC, artificially constructed challenge sets were established with the aim
to evaluate specific phenomena of interest, particularly for the RTE task. Challenge
sets were proposed to investigate neural RTE models for their capabilities of logic
reasoning (Richardson and Sabharwal 2019), lexical inference (Glockner, Shwartz,
and Goldberg 2018), and understanding language compositionality (Nie, Wang, and
Bansal 2019; Geiger et al. 2019).

4.8 Conclusion

We introduce a novel methodology for evaluating the reading comprehension of MRC
models by observing their capability to distinguish and correctly process lexically sim-
ilar yet semantically different input. We discuss lingustic phenomena that act as Se-
mantic Altering Modifications and present a methodology to automatically generate
and meaningfully modify MRC evaluation data. In an empirical study, we show that
while the capability to process SAM correctly is learnable in principle, state-of-the-art
MRC architectures optimised on various MRC training data struggle to do so. We con-
clude that one of the key reasons for this is the lack of challenging SAM examples in
the corresponding datasets.

Future work will include the search for and evaluation on further linguistic phe-
nomena suitable for the purpose of SAM, expanding the study from strictly extractive
MRC to other formulations such as generative or multiple-choice MRC, and collecting
a large-scale natural language MRC dataset featuring aligned SAM examples (e.g. via
crowd-sourcing) in order to investigate the impact on the robustness of neural models
when exposed to those examples during training.



Chapter 5

Discussion

5.1 Introduction

In this Chapter, we first discuss how the methodologies proposed in this thesis fit into
the larger research context and compare with similar methods and findings outlined in
Chapter 2. We then elaborate on the possibility to generalise the evaluation methodol-
ogy proposed in Chapter 4 with respect to different MRC systems and training data for
data-driven approaches specifically. We discuss the possibility to evaluate the capabil-
ities of processing other linguistic phenomena of interest, particularly those introduced
in Chapter 3. Furthermore we elaborate on how this methodology can be applied to
other tasks beyond extractive MRC. Finally, we present the limitations of the method-
ology with regard to its scaling potential and scope of application and suggest methods
to alleviate these limitations.

5.2 Positioning in research context

In this section, we position the methodologies proposed in Chapters 3 and 4 into
the wider research context. Furthermore we compare our findings of applying these
methodologies to what has been reported in relevant literature.

Qualitative Framework The framework proposed in Chapter 3 concerns the manual
annotation of MRC evaluation data. In terms of the taxonomy presented in Chapter 2,
it is categorised as Investigating Data: Manual Analysis. Other works in this category
include the line of work by Sugawara et al. (2017; 2017; 2018). Their annotation

95
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framework concerns reading comprehension capabilities grounded in psychology lit-
erature. More specifically, they derive them from a reading comprehension model
proposed by McNamara and Magliano (2009), which extends the C-I model (Kintsch
1988). Conversely, our reasoning categories are derived from observed data, extend-
ing the (data-induced) classification of the ARC corpus (Clark et al. 2018) by Boratko
et al. (2018). The examples of the recently released MRC dataset QuAIL (Rogers et al.
2020) are annotated with reasoning capabilities that are required to solve them. The
source for the chosen reasoning categories is not evident, however.

Strikingly, none of the works mentioned in the previous paragraph, nor the MRC
data itself, include annotations regarding different linguistic features and phenomena
of interest, with the exception of coreference resolution, where Quoref (Dasigi et al.
2019) constitutes a dataset focusing on this phenomenon specifically1. As it stands,
the proposed framework and the resulting annotations are—as far as we are aware—
the first principled attempt to investigate the presence of various linguistic phenomena
in MRC datasets.

Note that simply annotating MRC data (e.g. under the proposed framework) and
measuring the performance of MRC systems on the annotated data as an attempt to
establish the processing performance, potentially over-estimates the processing capa-
bilities of the phenomena under investigation, as long as the training and evaluation
data stem from the same generative process. The reason for this is the fact that (data-
driven) systems can exploit “dataset biases” to arrive at the expected answer regardless
of the capabilities associated with it, as motivated in Chapter 1 and discussed in more
depth in Chapter 2. While the annotation guidelines take into account the more ob-
vious cues (e.g. we would not annotate the question “Why did the chicken cross the
road?” with the label Causal reasoning, if the information is cued directly, in a form
similar to “The chicken crossed the road, because it could.”), this is insufficient to de-
tect some types of spurious and simplifying dataset correlations, because, as discussed
in Chapter 2, they might be not noticeable by humans.

Nonetheless, these annotations can be used as a basis for the development of “Test-
only benchmarks” (Linzen 2020), expert-curated benchmarks with focus on various
linguistic capabilities to be used to measure the progress toward “general linguistic
intelligence” (Yogatama et al. 2019). However, using these data to establish linguistic

1Sugawara et al. (2017) also include the processing of clause structure including relative clauses as
one of the annotated skills, in addition to coreference resolution
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capabilities of models trained on arbitrary data can be confounded by the effects intro-
duced by the distribution shift between training and benchmark data, as they stem from
different generative processes. In simple terms, a model can consistently fail to pro-
cess these benchmarks correctly, because the benchmark data is “too different” from
its training data.

Domain-independent consistency evaluation The requirement to disentangle these
effects is the motivation for the design of the DICE evaluation methodology discussed
in Chapter 4. Regarding the taxonomy introduced in Chapter 2, DICE falls under In-

vestigating Models: Challenge set. Again, to our knowledge it is the only MRC chal-
lenge set where the investigated capabilities are inspired by linguistic phenomena, such
as SAM, thus contributing to the development of MRC challenge sets with focus on
linguistic capabilities, a research gap identified in Chapter 2. Other MRC challenge set
methodologies concern acquired background knowledge (Richardson and Sabharwal
2019) or the capability to integrate information from different sources (Trivedi et al.
2020). Most similar to our methodology is a recent idea to construct so called “contrast
sets” (Gardner et al. 2020) – clusters of similar yet semantically different data points.
In contrast to our work, the aim is not to provide a dataset-free evaluation methodology.
Furthermore, the generation of semantically different data points is driven by pragma-
tism rather than specific linguistic features. Ribeiro, Guestrin, and Singh (2019) also
evaluate the consistency of MRC models: they generate new questions and expected
answers by swapping answer and part of the question. The generation of these is thus
guided by the dependency structure of the original question.

Synthesis of Findings In conclusion, our findings are consistent with the literature.
Sugawara et al. (2018) finds that MRC evaluation data is missing challenging exam-
ples; in Chapter 3 we demonstrate the lack of appropriate linguistic features as one
possible explanation. In Chapter 2 we outline a general theme found in literature: op-
timised MRC models do not infer various capabilities if their training data does not
explicitly feature them. The research we undertake is in line with this theme: vari-
ous linguistic phenomena are absent in evaluation data, as we discuss in Chapter 4,
hence it is unknown whether data-driven MRC approaches acquire the capabilities to
process these phenomena. When explicitly tested for a subset of these capabilities, we
find that state-of-the-art data-driven MRC in fact do not acquire them (see Chapter 4.
We conjecture that missing training examples featuring these phenomena are a likely
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explanation for this failure. As opposed to reasoning capabilities (Sugawara, Yokono,
and Aizawa 2017; Sugawara et al. 2018), acquired knowledge (Richardson et al. 2019)
or ad-hoc (Rogers et al. 2020) and pragmatically (Jia and Liang 2017; Gardner et al.
2020) identified phenomena and capabilities, our research differs in scope, in that we
focus specifically on linguistic phenomena in MRC.

5.3 Generalising the Methodology

In this thesis, we investigate the acquired capabilities with respect to SAM for span-
extraction based MRC. This gives rise to the question of how well these findings apply
to other phenomena and other MRC task formulations. In this section, we outline
the conceptual requirements for linguistic phenomena such that they can be evaluated
under the proposed methodology, and how it can be adapted to different MRC task
flavours.

System and training data Because we treat the system under evaluation like a
“black box”, the method is agnostic to its specific architecture, as long as the inputs
and outputs match, i.e. question and paragraph as input and a span annotation in the
paragraph as output. This allows to draw comparisons between various systems, and
measure how differences in their architecture impact their performance on the phe-
nomenon under investigation, as done in the empirical study in Chapter 4.

The only assumption made is that the system can solve the unmodified (i.e. base-

line) instances of the challenge set to some degree, as the sample size in the calcula-
tion of the proposed DICE score directly depends on the number of solved baseline
examples. As a consequence, lower sample sizes due to less correctly solved baseline
instances increase the uncertainty of the score measurement. This uncertainty can be
reported using appropriate statistical testing: in the study we use Fisher’s Exact Test
(Fisher 1922).

For data-driven approaches, as is the case with state-of-the-art MRC systems, the
same challenge set can be used for comparison of models optimised on different train-
ing data, because the final metric does not penalise systems for incorrectly processed
instances with the linguistic phenomenon under evaluation (i.e. SAM) that can be
explained by the domain shift between training and challenge set data.

This formulation has—in theory—a caveat, however: A model performing well
on a small subset of the challenge set could obtain higher scores than a model that
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Passage: After the kickoff Naomi Daniel (almost) curled in a goal from 26 metres
away following a decisive counter-attack. Then Amanda Collins added more insult
to the injury when she slotted in from 23 metres after Linda Burger’s soft clearance.
Unanswerable question: Who scored before Amanda Collins?
Answer: Naomi Daniel Answer with SAM: ∅
Multiple-choice question: Who scored the farthest goal?
Choices: A: Linda Burger B: Naomi Daniel C: Amanda Collins
Answer: B Answer with SAM: C
Fill-in-the-gap question: ? scored the farthest goal.
Answer: Naomi Daniel Answer with SAM: Amanda Collins
Question with generated answer: How many goals were scored in the match?
Answer: 2 Answer with SAM: 1

Figure 5.1: Manifestation of a challenge set instance when generated for different
MRC task formulations. The insertion of a SAM (here: almost as archetypal example)
alters the expected answer.

performs worse but on a larger subset. Take, for example, a hypothetical model A that
solves only 10% of the baseline (and control) challenge set instances correctly, but for
those 10% it solves 75% of the modified instances (i.e. intervention). Compare it to
another hypothetical model B, that solves 50% of the baseline and control instances,
but for those, it only solves 50% of the intervention instances correctly. Model A will
have a higher DICE score, because for those baseline and control instances it solved
correctly, it solved a higher fraction of intervention instances than model B, despite
solving less (baseline, intervention and control) instances correctly overall. To account
for this effect, the number of correctly solved instances in both baseline and control
forms, i.e. |B+ ∩ C+| can be reported alongside the DICE scores, to provide more
context. It is worth noting that we did not observe the hypothetical behaviour outlined
above in our experiments: models with a higher DICE score also solved more baseline
and control instances on average.

Task Generalisation We discuss how the proposed methodology can be adapted
to different popular formulations of MRC. Specifically, we focus on extractive MRC
with unanswerable questions (Rajpurkar, Jia, and Liang 2018), fill-in-the-gap queries,
multiple choice MRC and generative MRC where answer strings are not restricted. We
summarise these formulations in Table 5.1.

Introducing unanswerable questions to the challenge set generation is possible: it



100 CHAPTER 5. DISCUSSION

allows to relax some of the constraints posed on the order of events to obtain a se-
mantically correct passage, which can lead to increased data diversity. For the running
example in Chapter 4 “Who scored the farthest goal?” the requirement that the pas-
sage must describe (at least) two goal events can be dropped: After modifying the
semantics of the only sentence describing a goal, the question would be unanswerable,
because no goal was scored at all. This violates the extractive MRC formulation, but
if unanswerable questions conform with the task formulation (and the architecture and
training data of the model under evaluation support these), they are allowed.

Converting the challenge set to fill-in-the-gap or multiple choice style requires the
adaptation of question templates accordingly. For the latter case, the answer candidates
can directly be generated from the logical form of the passage representing the events,
e.g. all occurring numbers for a “When” question or all named entities for a “Who”

question.

Finally, for generative MRC, the problems of evaluating the correctness of the gen-
erated answer string discussed in Chapter 1 apply. If the generated answer is con-
strained, however, as is common practice (Dua et al. 2019b), then the usual evaluation
measures (i.e. EM and F1 score) apply. For the domain introduced in Chapter 4, foot-
ball, it makes sense to include numbers as generated strings. This allows to evaluate
more reasoning capabilities of MRC systems (provided their architecture supports this
and the training data they were optimised upon provides such examples), i.e. Arith-

metic reasoning such as Addition and Substraction (see Chapter 4).

Phenomena Generalisation We introduced various linguistic phenomena of interest
in Chapter 3 and in Chapter 4 we evaluated the capability of extractive MRC systems
to process a part of those found not to be evaluated by existing MRC gold standards.

In this thesis, we focus on the capability to process Semantic Altering Modifica-
tions. With respect to the framework introduced in Chapter 3, they concern multiple
categories (e.g. Negation, Restrictivity) and are enriched by other phenomena that fit
the definition. We set this focus because the capability to distinguish similar yet se-
mantically different sentences is a necessary (but not sufficient) requirement for read-
ing comprehension. The question remains open on how to evaluate MRC systems with
regard to their processing capabilities of other phenomena of interest that were not
focussed in this thesis. Below, we outline opportunities and limits to generalise the
proposed methodology to other phenomena.

Concretely, we identify three different classes of phenomena: those where the
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Baseline Passage: The match started when a stray ball struck by Naomi Daniel
flew towards the goal of Dynamic Duckburg, homing into the goal. Then Amanda
Collins scored from 25 metres. [. . . ]
Intervention Passage: The match started when a stray ball struck by Naomi Daniel
flew towards the goal of Dynamic Duckburg, without homing into the goal. Then
Amanda Collins scored from 25 metres. [. . . ]
Question: Who scored the first goal of the match?
Answer: Naomi Daniel
Answer with SAM: Amanda Collins

Figure 5.2: Example of a discourse level SAM by inserting an explicit connective
and thus the relation between two discourse arguments. Note how inserting “without”
changes the semantics of the first sentence – the goal wasn’t scored. This, in turn,
changes the expected answer to the question.

methodology can be applied “off-the-shelf”, those where it requires some adaptations
and those the methodology is not suitable to evaluate.

Other SAM categories mentioned but not further discussed in Chapter 4 (e.g. dis-
course level SAM as depicted in Figure 5.2) fall in the first category: to evaluate these
phenomena, they just need to be incorporated in the generation process of the challenge
set in form of appropriate templates and production rules.

For those phenomena that allow to align original and modified instances in a fash-
ion similar to SAM, DICE is still applicable to evaluate the capability to process them.
Particularly, for the (lexical and syntactic) variety features, as introduced in Chapter 3,
namely: Lexical Entailment, Dative or Genitive alteration, the use of Abbreviations

and Synonyms as well as change in Voice and style (Nominalisation). In this case,
the baseline instance constitutes a passage without the phenomenon under evaluation
and the modification alters the passage by inserting it. Since these alterations are se-

mantics preserving, there is no need for a control instance (that would establish the
capability to retrieve the answer from the altered passage). However, attention needs
to be paid when constructing challenge set examples, as intervention instances do not
alter the semantics and cues can “give away” the expected answer, regardless of the
presence of the phenomenon under evaluation. For an example on Dative alteration—
one that is better and less fortunate—see Figure 5.3. This formulation is similar to the
semantically-equivalent adversarial edits (SEA; Ribeiro, Singh, and Guestrin, 2018).
Their alterations are however adversarial rather than linguistically motivated. It is
worth noting that alterations which involve these phenomena discussed above do not
make full use of the reading comprehension setting and can be evaluated in other tasks,
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Baseline Passage: Bob baked some cookies for Alice. [. . . ]
Intervention Passage: Bob baked Alice some cookies. [. . . ]
Question: What did Bob bake? Answer: some cookies (not Alice)
Baseline Passage: Bob drew a picture of mom for Alice. [. . . ]
Intervention Passage: Bob drew Alice a picture of mom. [. . . ]
Question: Who did Bob draw? Answer: mom (not Alice)

Figure 5.3: Aligned baseline and intervention examples for the semantics-preserving
Dative modification. Note how the above example exhibits a cue: the interrogative
pronoun What indicates that the answer is “Alice”, the only other person mentioned in
the sentence besides Bob. In the example below, the interrogative pronoun Who does
not cue the answer, as it could refer to both “Alice” and “mom”.

Passage A: Bob saw Alice with a telescope. She was using it to look at the stars.
[. . . ]
Passage B: Bob saw Alice with a telescope. She was too far away to see with the
naked eye but Bob could still see her because of its magnifying lenses. [. . . ]
Question: Who has the telescope? Answer A: Alice Answer B: Bob

Figure 5.4: Example of an ambiguous preposition. In Passage A, the accompanying
context resolves the ambiguous with preposition such that Alice has the telescope,
while according to passage B, Bob has the telescope.

e.g. RTE. The capability to process them can be evaluated with the minimal context
of a single sentence, in contrast to SAM phenomena, where the correct processing of
multiple sentences is required. This, in fact, is the reason why the investigations in this
thesis do not focus on these phenomena.

For phenomena concerning the ambiguity of language, such as ambiguous Preposi-

tions, Relative and Adverbial phrases as well as Appositions, where the correct resolu-
tion depends on the context of the whole passage, it is not necessarily clear what would
constitute a valid baseline version of the passage and what would be a modification.
In this case, consistency evaluation (Gardner et al. 2020) appears more appropriate,
i.e. by counting the number of correctly solved aligned instances where the expected
answer is retrieved for all contexts that dictate a different resolution. For an example
of different ambiguity resolutions and consecutively different expected answers, see
Figure 5.4. The following question remains, however: if the evaluation is undertaken
without a training set, similar to DICE, how does one discount the effect of domain
shift between training and evaluation data? One possibility is to only regard those
instances where the predicted answer is one of the two ambiguous candidates, e.g.
Alice or Bob in the example, and disregard those where any other string is predicted.
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In fact, this formulation is equivalent to the Winograd Schema Challenge (Levesque,
Davis, and Morgenstern 2012), which is part of the Glue and SuperGLUE benchmark
suites (Wang et al. 2018, 2019). The key differences to our proposition are, however,
that they (a) feature a training set and (b) focus exclusively on resolving ambiguous
pronoun coreferences.

Finally, it is worth noting that the introduced methodology concerns the Lingusitic

Features dimension of the qualitative framework introduced in Chapter 3. It is not
straightforward to imagine modifications that introduce different types of Reasoning

in the sense of the framework2 and what an unmodified instance should look like. How-
ever, these dimensions should be regarded as orthogonal: the challenge set methodol-
ogy evaluates different reasoning capabilities in the presence (or absence) of various
linguistic phenomena of interest. The examples in Figure 5.1 and the running example
in Chapter 4 (Figure 4.1) evaluate the capabilities to perform Comparison and Count-

ing in the presence of semantic altering modifications.

5.4 Limitations: Scale and Scope

In this section we discuss the limitations of the approaches put forward in this thesis.
Particularly we discuss their potential to scale approaches and their generalisation to
different MRC domains.

Data Variety Increasing the number of instances in the challenge set is relatively
easy, as the instances are generated by an algorithm. The implementation further al-
lows to adjust the composition of question types (i.e. Reasoning), should the require-
ment emerge to shift the focus of the evaluation on different capabilities, e.g. when a
system by design cannot perform a specific reasoning type. Increasing the variety of
data (e.g. as measured by Lexical Diversity in Chapter 4), however, is more difficult,
as it requires the collection of new templates and integration of new expansion rules.
In other words, expert knowledge and manual work is required. An open question
remains whether and to what extent this task can be crowd-sourced. Gardner et al.
(2020) argue that the creation of challenging (MRC) examples is better left to experts,
while Kaushik, Hovy, and Lipton (2020) successfully collect modified examples using
crowd-sourcing methods, although not for the task or MRC. It is worth pointing out

2Other than perhaps Temporal reasoning, where—for the baseline instance—events would appear in
the passage sequentially and the modification would shuffle their order while preserving the temporality
by using appropriate discourse connectives (e.g. “before”, “after”, etc).
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that in both papers they were not constrained to perform modifications that correspond
to specific linguistic phenomena but are rather driven by pragmatism.

Another relevant line of work involves the automated extraction of templates from
background corpora (Angeli, Liang, and Klein 2010; Kondadadi, Howald, and Schilder
2013). A possible research direction is to investigate to what extent the gathering of
hand-crafted templates can be assisted by automated methods. Finally, crowd-sourcing
the template generation (Mitchell, Bohus, and Kamar 2014) is an exciting avenue that
combines both outlined possibilities to increase the data variety.

Other Domains Over the course of this thesis, we did not regard other domains be-
yond factual open-domain MRC data. However, other MRC can be employed in a wide
range of specific settings, such as biomedical (Pampari et al. 2018; Suster and Daele-
mans 2018), scientific 3 and legal (Holzenberger, Blair-Stanek, and Van Durme 2020)
or in conversations (Reddy, Chen, and Manning 2019; Choi et al. 2018). Other settings
feature their own challenges that are not found in the open-domain setting. Thus it re-
mains an open question how relevant the evaluation methodologies proposed in this
thesis are for those domains and how well they are applicable. For example, it is un-
clear whether the focus on linguistic features as the main motivation for the annotation
framework presented in Chapter3 is relevant for questions over patient notes or whether
a legal statute applies to a specific case, as these tend to have their specific discourse
structure. When writing patient notes, doctors often use abbreviations, specialised vo-
cabulary and ellipses (Pampari et al. 2018). Legal documents and conversations use a
different discourse structure, with referential expressions that are different to factoid
texts.

Tackling the limitations outlined above will significantly benefit the rapid adapta-
tion of the methodology to different domains in order to pursue this question, or the
evaluation of different phenomena that require question types and reasoning capabili-
ties not included when designing the challenge set generation in Chapter 4.

3e.g. Reading Comprehension and question answering for the Covid-19 literature: https:
//github.com/deepset-ai/COVID-QA

https://github.com/deepset-ai/COVID-QA
https://github.com/deepset-ai/COVID-QA


Chapter 6

Conclusion & Future work

6.1 Revisiting the research questions and objectives

In this section we revisit the research objectives set out to seek evidence towards the
research questions, as formulated in Chapter 1.

• RQ1: What methodologies have been proposed to evaluate data-driven natural
language understanding, inference and comprehension?
In order to answer this question, in Chapter 2 we devised a structured survey
of methods that have been proposed to identify, measure and overcome weak-
nesses in data-driven approaches to natural language understanding, inference
and comprehension. We evaluated 121 articles and categorised the methods they
propose by their target application, whether they investigate training and evalu-
ation data, optimised model behaviour or propose improvements to obtain more
robust models. We further investigated 91 resource papers with regard to how
they report and establish the quality of their resource. We found that for the
task of MRC, there are research gaps concerning the investigation of evaluated
linguistic capabilities and, more specifically, challenge sets that evaluate opti-
mised MRC models are missing. This chapter is described by a manuscript that
is currently submitted for review at the Natural Language Engineering journal.

• RQ2: What are the linguistic and cognitive challenges associated with state-
of-the art MRC gold standards and how well are these challenges evaluated?
In order to address this, in Chapter 3 we propose a manual annotation frame-
work for MRC evaluation data. The framework consists of 43 annotation labels
along 4 dimensions, specifically (1) linguistic variety and ambiguity features

105
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present in passages and questions, (2) background knowledge required to solve
the questions, (3) various reasoning capabilities involved to arrive at the expected
answer, as well as the (4) factual correctness of the data. We apply this frame-
work to annotate 300 questions, passages and answers randomly sampled from 6
randomly selected datasets. We find that linguistic features that would constitute
challenging examples, such as Restrictivity Modification, are typically not found
in evaluation data, which simplifies the task of finding the answer. We further
demonstrate the point by training a simple baseline based on lexical overlap be-
tween sentences and questions to find the answers, which performs well above
chance. This chapter is described by a publication in proceedings of the LREC
2020 conference (Schlegel et al. 2020).

• RQ3: How well does MRC perform on phenomena that are absent in state-of-
the-art evaluation data?
In Chapter 4 we select Semantics Altering Modifications (SAM) as a subset of
those features that are not evaluated in state-of-the-art MRC gold standards. In
search for evidence towards this question, we devise a methodology to evaluate
the capability of MRC systems to correctly process SAM independent of train-
ing data and system architecture and not prone to dataset artefacts as discussed
in Chapter 2. We evaluate 12 transformer-based MRC models evaluated on 4
different datasets for a total of 48 models and find that state-of-the-art extractive
MRC systems struggle to process these SAM examples correctly. We manually
investigate the datasets used for training and find that training examples, that
would encourage to learn to process distracting sentences correctly, are missing
in the training data. Finally, in Chapter 5 we discuss how the methodology can
be generalised to other task formulations and lingustic phenomena presented in
Chapter 3. This chapter is described by a manuscript that is submitted for review
at the CoNLL 2021 conference a publication in proceedings of the AAAI 2021
conference (Schlegel, Nenadic, and Batista-Navarro 2020a).

6.2 Future work

At various points in the thesis we make suggestions for future research avenues. In this
section we compile and revisit them:
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• In Chapter 2 we identify the need to devise methods that quantitatively mea-
sure and identify spurious correlations between input data and expected output,
and apply them to MRC benchmarks, similar to the discussed methods that are
applied to RTE data. Therefore, methods detecting words or patterns that can
cue the expected answer can be incorporated as quantitative measures into the
framework proposed in Chapter 3, in addition to the measure of lexical overlap.
This will help to understand the nature of the unwanted correlations present in
MRC data. Furthermore, a systematic application of appropriate methods to de-
tect artefacts in investigated datasets follows naturally from our analysis. As this
is somewhat orthogonal to the main objectives set out for the thesis, we leave
this application for future work.

• In Chapter 4 we propose to generate challenge sets synthetically. The methodol-
ogy we employ to generate the data is rather crude and goal-oriented. As a result,
the conceptual complexity of the generation method increases with the size of
the grammar and number of templates. Furthermore, the event plan generation is
hard-coded for the specific reasoning types. Moving towards a more principled
approach to natural language generation, e.g. by relying on lexicalised gram-
mars, as is the case with openCCG (Baldridge and Kruijff 2003) and formulating
event plans in a more flexible framework, such as the event calculus (Kowalski
and Sergot 1989) could help to scale and port the generation process more eas-
ily. Alternatively, crowd-sourcing challenge set data by using human-annotated
data will increase their naturality and diversity when compared to the purely
template-based generation approach. Finally, in Chapter 5 we discuss the impli-
cations to combine automated, manual and crowd-sourced template creation to
be able to generate challenge set corpora more time- and cost-efficiently. Doing
so will allow for evaluating MRC models from different domains not covered in
this thesis. However, this leaves open the question of which parts of the gram-
mar process can be learned from a corpus or crowd-sourced, without losing full
control over the results.

• In Chapter 4 we propose to apply DICE to other linguistic features of interest and
discuss possible ways to do so in Chapter 5. Our future work will concern the
design of a “general linguistic AI” evaluation benchmark that features challenge
sets for the phenomena identified in Chapter 3.

• Finally, while in this thesis we show that state-of-the-art MRC models fail to
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process SAM correctly, we do not discuss possible strategies to improve per-
formance. In Chapter 2, we identified data augmentation and training procedure
improvements as two possible directions to improve the robustness of deep learn-
ing based models. While we find that as little as 500 modified examples from
our challenge set are sufficient to learn to succeed at it, it is interesting to iden-
tify suitable surrogate tasks or datasets that can improve the performance on the
SAM challenge set.
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A Inclusion Criteria for the Dataset Corpus

allintitle: reasoning ("reading comprehension" OR "machine
comprehension") -image -visual -"knowledge graph" -"knowledge
graphs"
allintitle: comprehension ((((set OR dataset) OR corpus) OR
benchmark) OR "gold standard") -image -visual -"knowledge graph"
-"knowledge graphs"
allintitle: entailment ((((set OR dataset) OR corpus) OR
benchmark) OR "gold standard") -image -visual -"knowledge graph"
-"knowledge graphs"
allintitle: reasoning ((((set OR dataset) OR corpus) OR
benchmark) OR "gold standard") -image -visual -"knowledge graph"
-"knowledge graphs"
allintitle: QA ((((set OR dataset) OR corpus) OR benchmark) OR
"gold standard") -image -visual -"knowledge graph" -"knowledge
graphs" -"open"
allintitle: NLI ((((set OR dataset) OR corpus) OR benchmark) OR
"gold standard") -image -visual -"knowledge graph" -"knowledge
graphs"
allintitle: language inference ((((set OR dataset) OR corpus) OR
benchmark) OR "gold standard") -image -visual -"knowledge graph"
-"knowledge graphs"
allintitle: "question answering" ((((set OR dataset) OR corpus)
OR benchmark) OR "gold standard") -image -visual -"knowledge
graph" -"knowledge graphs"

Table A.1: Google Scholar Queries for the extended dataset corpus

We expand the collection of papers introducing datasets that were investigated or
used by any publication in the original survey corpus (e.g. those shown in Figure A.1)
by a Google Scholar search using the queries shown in Table A.1. We include a paper
if it introduces a dataset for an NLI task according to our definition and the language
of that dataset is English, otherwise we exclude it.
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Figure A.1: Word cloud with investigated RTE, MRC and other datasets. Size propor-
tional to the number of surveyed papers investigating the dataset.
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B Detailed Survey Results

The following table shows the full list of surveyed papers, grouped by dataset and
method applied. As papers potentially report the application of multiple methods on
multiple datasets, they can appear in the table more than once.

Dataset Method used Used by / Investigated by
MNLI Adversarial Evalua-

tion
(Han, Wallace, and Tsvetkov 2020; Chien and Kalita
2020; Nie, Wang, and Bansal 2019)

Stress-test (Rozen et al. 2019; Liu et al. 2019b; Glockner,
Shwartz, and Goldberg 2018; Richardson et al. 2019;
Nie, Wang, and Bansal 2019; McCoy, Pavlick, and
Linzen 2019; Naik et al. 2018)

Arch/Training
Improvements

(Sagawa et al. 2020; Stacey et al. 2020; Minervini and
Riedel 2018; He, Zha, and Wang 2019; Mitra, Shrivas-
tava, and Baral 2020; Yaghoobzadeh et al. 2019; Wang
et al. 2018; Zhou and Bansal 2020; Clark, Yatskar, and
Zettlemoyer 2019; Zhang et al. 2019c; Mahabadi, Be-
linkov, and Henderson 2020; Belinkov et al. 2019)

Heuristics (Gururangan et al. 2018; Tan et al. 2019; Poliak et al.
2018; Zhang et al. 2019a; Bras et al. 2020; Nie, Wang,
and Bansal 2019; McCoy, Pavlick, and Linzen 2019)

Partial Baselines (Gururangan et al. 2018; Poliak et al. 2018; Nie, Wang,
and Bansal 2019)

Data Improvements (Mitra, Shrivastava, and Baral 2020; Panenghat et al.
2020; Zhou and Bansal 2020; Min et al. 2020)

Manual Analyses (Pavlick and Kwiatkowski 2019)

SQuAD Adversarial Evalua-
tion

(Jia and Liang 2017; Basaj et al. 2018; Mudrakarta
et al. 2018; Rychalska et al. 2018; Wallace et al. 2019)

Arch/Training
Improvements

(Min et al. 2018; Zhou et al. 2019; Yuan et al. 2019a;
Liu et al. 2020a; Wu and Xu 2020; Ko et al. 2020;
Clark, Yatskar, and Zettlemoyer 2019; Wu et al. 2019)

Manual Analyses (Sugawara et al. 2017; Pugaliya et al. 2019; Sugawara
et al. 2018)

Heuristics (Ko et al. 2020; Sugawara et al. 2018)
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Data Improvements (Wang and Bansal 2018; Nakanishi, Kobayashi, and
Hayashi 2018)

Partial Baselines (Kaushik and Lipton 2018; Sugawara et al. 2020)
Stress-test (Liu et al. 2019b; Ribeiro, Guestrin, and Singh 2019;

Nakanishi, Kobayashi, and Hayashi 2018; Dua et al.
2019a)

FEVER Adversarial Evalua-
tion

(Thorne et al. 2019)

Data Improvements (Panenghat et al. 2020; Schuster et al. 2019)
Heuristics (Schuster et al. 2019)
Arch/Training
Improvements

(Schuster et al. 2019)

ARCT Heuristics (Niven and Kao 2019)
Adversarial Evalua-
tion

(Niven and Kao 2019)

SWAG Data Improvements (Zellers et al. 2018, 2019)
Partial Baselines (Trichelair et al. 2019; Sugawara et al. 2020)

RACE Adversarial Evalua-
tion

(Si et al. 2020, 2019)

Partial Baselines (Si et al. 2019; Sugawara et al. 2020)
Heuristics (Sugawara et al. 2018)
Manual Analyses (Sugawara et al. 2018)

DREAM Partial Baselines (Si et al. 2019)
Adversarial Evalua-
tion

(Si et al. 2019)

MCScript Partial Baselines (Si et al. 2019)
Adversarial Evalua-
tion

(Si et al. 2019)

Heuristics (Sugawara et al. 2018)
Manual Analyses (Sugawara et al. 2018)

MCScript
2.0

Partial Baselines (Si et al. 2019)

Adversarial Evalua-
tion

(Si et al. 2019)

MCTest Partial Baselines (Si et al. 2019; Sugawara et al. 2020)
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Adversarial Evalua-
tion

(Si et al. 2019)

Manual Analyses (Sugawara et al. 2017; Sugawara, Yokono, and Aizawa
2017; Sugawara et al. 2018)

Heuristics (Sugawara et al. 2018)

DROP Data Improvements (Dua et al. 2019b)
Manual Analyses (Schlegel et al. 2020)
Stress-test (Gardner et al. 2020; Dua et al. 2019a)

ANLI Data Improvements (Nie et al. 2020)

Hella-
SWAG

Data Improvements (Zellers et al. 2019)

SNLI Adversarial Evalua-
tion

(Sanchez, Mitchell, and Riedel 2018; Nie, Wang, and
Bansal 2019)

Heuristics (Rudinger, May, and Van Durme 2017; Mishra et al.
2020; Gururangan et al. 2018; Tan et al. 2019; Poliak
et al. 2018; Zhang et al. 2019a; Bras et al. 2020; Nie,
Wang, and Bansal 2019)

Arch/Training
Improvements

(Stacey et al. 2020; Minervini and Riedel 2018; Jia
et al. 2019; He, Zha, and Wang 2019; Mitra, Shrivas-
tava, and Baral 2020; Zhang et al. 2019c; Mahabadi,
Belinkov, and Henderson 2020; Belinkov et al. 2019)

Data Improvements (Mishra et al. 2020; Mitra, Shrivastava, and Baral
2020; Kang et al. 2018; Kaushik, Hovy, and Lipton
2020)

Partial Baselines (Gururangan et al. 2018; Poliak et al. 2018; Feng, Wal-
lace, and Boyd-Graber 2019; Nie, Wang, and Bansal
2019)

Manual Analyses (Pavlick and Kwiatkowski 2019)
Stress-test (Glockner, Shwartz, and Goldberg 2018; Richardson

et al. 2019; Nie, Wang, and Bansal 2019; Kaushik,
Hovy, and Lipton 2020)

HotPot-
QA

Adversarial Evalua-
tion

(Jiang and Bansal 2019)

Data Improvements (Jiang and Bansal 2019)
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Arch/Training
Improvements

(Jiang and Bansal 2019)

Manual Analyses (Schlegel et al. 2020; Pugaliya et al. 2019)
Partial Baselines (Min et al. 2019; Sugawara et al. 2020; Chen and Dur-

rett 2019; Trivedi et al. 2020)
Stress-test (Trivedi et al. 2020)
Heuristics (Trivedi et al. 2020)

NewsQA Arch/Training
Improvements

(Min et al. 2018)

Manual Analyses (Schlegel et al. 2020; Sugawara et al. 2017, 2018)
Stress-test (Dua et al. 2019a)
Heuristics (Sugawara et al. 2018)

TriviaQA Arch/Training
Improvements

(Min et al. 2018; Clark, Yatskar, and Zettlemoyer
2019)

Heuristics (Sugawara et al. 2018)
Manual Analyses (Sugawara et al. 2018)

HELP Data Improvements (Yanaka et al. 2019b)

ADD-1 Arch/Training
Improvements

(Stacey et al. 2020; Belinkov et al. 2019)

Heuristics (Poliak et al. 2018)
Partial Baselines (Poliak et al. 2018)

DPR Arch/Training
Improvements

(Stacey et al. 2020; Belinkov et al. 2019)

Heuristics (Poliak et al. 2018)
Partial Baselines (Poliak et al. 2018)

FN+ Arch/Training
Improvements

(Stacey et al. 2020; Belinkov et al. 2019)

Heuristics (Poliak et al. 2018)
Partial Baselines (Poliak et al. 2018)

JOCI Arch/Training
Improvements

(Stacey et al. 2020; Zhang et al. 2019c; Belinkov et al.
2019)

Heuristics (Poliak et al. 2018)
Partial Baselines (Poliak et al. 2018)
Manual Analyses (Pavlick and Kwiatkowski 2019)
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MPE Arch/Training
Improvements

(Stacey et al. 2020; Belinkov et al. 2019)

Heuristics (Poliak et al. 2018)
Partial Baselines (Poliak et al. 2018)

SICK Arch/Training
Improvements

(Stacey et al. 2020; Wang et al. 2018; Zhang et al.
2019c; Belinkov et al. 2019)

Heuristics (Poliak et al. 2018; Zhang et al. 2019a)
Partial Baselines (Poliak et al. 2018; Lai and Hockenmaier 2014)

SPR Arch/Training
Improvements

(Stacey et al. 2020; Belinkov et al. 2019)

Heuristics (Poliak et al. 2018)
Partial Baselines (Poliak et al. 2018)

SciTail Arch/Training
Improvements

(Stacey et al. 2020; Belinkov et al. 2019)

Heuristics (Poliak et al. 2018)
Partial Baselines (Poliak et al. 2018)
Stress-test (Glockner, Shwartz, and Goldberg 2018)

MSMarco Manual Analyses (Schlegel et al. 2020; Sugawara et al. 2017; Pugaliya
et al. 2019; Sugawara et al. 2018)

Heuristics (Sugawara et al. 2018)

MultiRC Manual Analyses (Schlegel et al. 2020)
Partial Baselines (Sugawara et al. 2020)

ReCoRd Manual Analyses (Schlegel et al. 2020)

COPA Heuristics (Kavumba et al. 2019)
Stress-test (Kavumba et al. 2019)
Adversarial Evalua-
tion

(Kavumba et al. 2019)

ReClor Heuristics (Yu et al. 2020)

QA4MRE Manual Analyses (Sugawara et al. 2017)

Who-
did-What

Manual Analyses (Sugawara et al. 2017)

Partial Baselines (Kaushik and Lipton 2018)

DNC Manual Analyses (Pavlick and Kwiatkowski 2019)

RTE2 Manual Analyses (Pavlick and Kwiatkowski 2019)
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CBT Arch/Training
Improvements

(Grail, Perez, and Silander 2018)

Partial Baselines (Kaushik and Lipton 2018)

Cam-
bridge-
Dialogs

Arch/Training
Improvements

(Grail, Perez, and Silander 2018)

CNN Partial Baselines (Kaushik and Lipton 2018)
Manual Analyses (Chen, Bolton, and Manning 2016)

bAbI Partial Baselines (Kaushik and Lipton 2018)

ROC-
Stories

Partial Baselines (Schwartz et al. 2017; Cai, Tu, and Gimpel 2017)

Heuristics (Cai, Tu, and Gimpel 2017)

DailyMail Manual Analyses (Chen, Bolton, and Manning 2016)

SearchQA Manual Analyses (Pugaliya et al. 2019)

QNLI Heuristics (Bras et al. 2020)

CoQA Manual Analyses (Yatskar 2019)
Partial Baselines (Sugawara et al. 2020)

QuAC Manual Analyses (Yatskar 2019)

SQuAD
2.0

Manual Analyses (Yatskar 2019)

Partial Baselines (Sugawara et al. 2020)
Stress-test (Dua et al. 2019a)

DuoRC Partial Baselines (Sugawara et al. 2020)
Stress-test (Dua et al. 2019a)

WikiHop Partial Baselines (Chen and Durrett 2019)
Heuristics (Sugawara et al. 2018)
Manual Analyses (Sugawara et al. 2018)

ARC Stress-test (Richardson and Sabharwal 2019)
Heuristics (Sugawara et al. 2018)
Manual Analyses (Sugawara et al. 2018)

OBQA Stress-test (Richardson and Sabharwal 2019)

BoolQ Stress-test (Gardner et al. 2020)

MCTACO Stress-test (Gardner et al. 2020)

Quoref Stress-test (Gardner et al. 2020; Dua et al. 2019a)
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ROPES Stress-test (Gardner et al. 2020; Dua et al. 2019a)

Narrative-
QA

Stress-test (Dua et al. 2019a)

Heuristics (Sugawara et al. 2018)
Manual Analyses (Sugawara et al. 2018)

This table omits the surveyed literature that was not targeting a specific dataset
(Geiger et al. 2019; Yanaka et al. 2019a; Ribeiro, Singh, and Guestrin 2018; Goodwin,
Sinha, and O’Donnell 2020; Salvatore, Finger, and Hirata Jr 2019).

The following table shows those 38 datasets from Figure 2.5 broken down by year,
where no quantitative methods to describe possible spurious correlations have been
applied yet:

Year Dataset
2015 DailyMail (Hermann et al. 2015), MedlineRTE (Abacha, Dinh, and

Mrabet 2015), WikiQA (Yang, Yih, and Meek 2015)

2016 SelQA (Jurczyk, Zhai, and Choi 2016), WebQA (Li et al. 2016),
BookTest (Bajgar, Kadlec, and Kleindienst 2016)

2017 CambridgeDialogs (Wen et al. 2017), SearchQA (Dunn et al. 2017),
GANNLI (Starc and Mladenić 2017)

2018 OBQA (Mihaylov et al. 2018), QuAC (Choi et al. 2018), MedHop
(Welbl, Stenetorp, and Riedel 2018), BioASQ (Kamath, Grau, and
Ma 2018), PoiReviewQA (Mai et al. 2018), emrQA (Pampari et al.
2018), ProPara (Dalvi et al. 2018), ReCoRd (Zhang et al. 2018)

2019 BoolQ (Clark, Yatskar, and Zettlemoyer 2019), MCTACO (Zhou et al.
2019), ROPES (Lin et al. 2019), SherLIiC (Schmitt and Schütze
2019), CLUTRR (Sinha et al. 2019), BiPaR (Jing, Xiong, and Yan
2019), NaturalQ (Kwiatkowski et al. 2019), CosmosQA (Huang et al.
2019), VGNLI (Mullenbach et al. 2019), PubMedQA (Jin et al. 2019),
WIQA (Tandon et al. 2019), TWEET-QA (Xiong et al. 2019), HEAD-
QA (Vilares and Gómez-Rodrı́guez 2019), RACE-C (Liang, Li, and
Yin 2019), CEAC (Liu et al. 2019b), HELP (Yanaka et al. 2019b)
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2020 QuAIL (Rogers et al. 2020), ScholarlyRead (Saikh, Ekbal, and Bhat-
tacharyya 2020), BioMRC (Stavropoulos et al. 2020), TORQUE
(Ning et al. 2020), SARA (Holzenberger, Blair-Stanek, and
Van Durme 2020)
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C Annotation Schema

Here, we describe our annotation schema in greater detail. We present the respective
phenomenon, give a short description and present an example that illustrates the fea-
ture. Examples for categories that occur in the analysed samples are taken directly
from observed data, and therefore do not represent the views, beliefs or opinions of
the authors. For those categories that were not annotated in the data we construct a
example.

C.1 Supporting Fact

We define and annotate “Supporting fact(s)” in line with contemporary literature as the
(minimal set of) sentence(s) that is required in order to provide an answer to a given
question. Other sources also call supporting facts “evidence”(Khashabi et al. 2018).

C.2 Answer Type

Span We mark an answer as span if the answer is a text span from the paragraph.

Question: Who was freed from collapsed roadway tunnel?
Passage: [. . . ] The quake collapsed a roadway tunnel, temporarily trapping about 50
construction workers. [. . . ]
Expected Answer: 50 construction workers.

Paraphrasing We annotate an answer as paraphrasing if the expected correct answer
is a paraphrase of a textual span. This can include the usage of synonyms, altering the
constituency structure or changing the voice or mode.

Question: What is the CIA known for?
Passage: [. . . ] The CIA has a reputation for agility [. . . ]
Expected Answer: CIA is known for agility.

Unanswerable We annotate an answer as unanswerable if the answer is not provided
in the accompanying paragraph.

Question: average daily temperature in Beaufort, SC
Passage: The highest average temperature in Beaufort is June at 80.8 degrees. The
coldest average temperature in Beaufort is February at 50 degrees [. . . ].
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Generated We annotate an answer as generated, if and only if it does not fall into the
three previous categories. Note that neither answers that are conjunctions of previous
categories (e.g. two passage spans concatenated with “and”) nor results of concatenat-
ing passage spans or restating the question in order to formulate a full sentence (i.e.
enriching it with pronomina) are counted as generated answers.

Question: How many total points were scored in the game?
Passage: [. . . ] as time expired to shock the Colts 27-24.
Expected Answer: 51.

C.3 Quality

Debatable We annotate an answer as debatable either if it cannot be deduced from
the paragraph, if there are multiple plausible alternatives or if the answer is not specific
enough. We add a note with the alternatives or a better suiting answer.

Question: what does carter say? (!sic)
Passage: [. . . ] “From the time he began, [. . . ]” the former president [. . . ] said in a
statement. “Jody was beside me in every decision I made [. . . ]”
Expected Answer: “Jody was beside me in every decision I made [. . . ]” (This is an

arbitrary selection as more direct speech is attributed to Carter in the passage.)

Wrong We annotate an answer as wrong, if the answer is factually incorrect. Further,
we denote why the answer is wrong and what the correct answer should be.

Question: What is the cost of the project?
Passage: [. . . ] At issue is the [. . . ] platform, [. . . ] that has cost taxpayers $1.2 billion
in earmarks since 2004. It is estimated to cost at least $2.9 billion more [. . . ].
Expected Answer: $2.9 Billion. (The overall cost is at least $ 4.1 Billion)

C.4 Linguistic Features

We annotate occurrences of a set of linguistic features in the supporting facts. On a
high-level, we differentiate between syntax and lexical semantics, as well as variety
and ambiguity. Naturally, features that concern question and corresponding passage
context tend to fall under the variety category, while features that relate to the passage
only are typically associated with the ambiguity category.
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Lexical Variety

Redundancy We annotate a span as redundant, if it does not alter the factuality of
the sentence. In other words, the answer to the question remains the same if the span
is removed (and the sentence is still grammatically correct).

Question: When was the last time the author went to the cellars?
Passage: I had not, [if I remember rightly]Redundancy, been into [the cellars] since [my
hasty search on]Redundancy the evening of the attack.

Lexical Entailment We annotate occurrences, where it is required to navigate the
semantic fields of words in order to derive the answer as lexical entailment. In other
words, we annotate cases, where the understanding of words’ hypernymy and hypon-
omy relationships is necessary to arrive at the expected answer.

Question: What [food items]LexEntailment are mentioned?
Passage: He couldn’t find anything to eat except for [pie]LexEntailment! Usually, Joey
would eat [cereal]LexEntailment , [fruit]LexEntailment (a [pear]LexEntailment), or [oatmeal]LexEntailment

for breakfast.

Dative We annotate occurrences of variance in case of the object (i.e. from dative to
using preposition) in the question and supporting facts.

Question: Who did Mary buy a gift for?
Passage: Mary bought Jane a gift.

Synonym and Paraphrase We annotate cases, where the question wording uses syn-
onyms or paraphrases of expressions that occur in the supporting facts.

Question: How many years longer is the life expectancy of [women]Synonym than
[men]Synonym?
Passage: Life expectancy is [female]Synonym 75, [male]Synonym 72.

Abbreviation We annotate cases where the correct resolution of an abbreviation is
required in order to arrive at the answer.

Question: How many [touchdowns]Abbreviation did the Giants score in the first half?
Paragraph: [. . . ] with RB Brandon Jacobs getting a 6-yard and a 43-yard [TD]Abbreviation

run [. . . ]
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Symmetry, Collectivity and Core arguments We annotate the argument variance
for the same predicate in question and passage such as argument collection for sym-
metric verbs or the exploitation of ergative verbs.
Question: Who married John?
Passage: John and Mary married.

Syntactic Variety

Nominalisation We annotate occurrences of the change in style from nominal to
verbal (and vice versa) of verbs (nouns) occurring both in question and supporting
facts.
Question: What show does [the host of]Nominalisation The 2011 Teen Choice Awards
ceremony currently star on?
Passage: The 2011 Teen Choice Awards ceremony, [hosted by]Nominalisation Kaley
Cuoco, aired live on August 7, 2011 at 8/7c on Fox.

Genitives We annotate cases where possession of an object is expressed by using the
genitive form (’s) in question and differently (e.g. using the preposition “of”) in the
supporting facts (and vice versa).
Question: Who used Mary’s computer?
Passage: John’s computer was broken, so he went to Mary’s office where he used the
computer of Mary.

Voice We annotate occurrences of the change in voice from active to passive (and
vice versa) of verbs shared by question and supporting facts.
Question: Where does Mike Leach currently [coach at]Voice?
Passage: [The 2012 Washington State Cougars football team] was [coached]Voice by
by first-year head coach Mike Leach [...].

Lexical Ambiguity

Restrictivity We annotate cases where restrictive modifiers need to be resolved in
order to arrive at the expected answers. Restrictive modifiers – opposed to redundancy
– are modifiers that change the meaning of a sentence by providing additional details.
Question: How many dogs are in the room?
Passage: There are 5 dogs in the room. Three of them are brown. All the [brown]Restrictivity

dogs leave the room.
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Factivity We annotate cases where modifiers – such as verbs – change the factivity
of a statement.

Question: When did it rain the last time?
Passage: Upon reading the news, I realise that it rained two days ago. I believe it
rained yesterday.
Expected Answer: two days ago

Syntactic Ambiguity

Preposition We annotate occurrences of ambiguous prepositions that might obscure
the reasoning process if resolved incorrectly.

Question: What tool do you eat spaghetti with?
Passage: Let’s talk about forks. You use them to eat spaghetti with meatballs.

Listing We define listing as the case where multiple arguments belonging to the same
predicate are collected with conjunctions or disjunctions (i.e. “and” or “or”). We
annotate occurrences of listings where the resolution of such collections and mapping
to the correct predicate is required in order to obtain the information required to answer
the question.

Passage: [She is also known for her roles]Predicate [as White House aide Amanda Tan-
ner in the first season of ABC’s ”Scandal”]Argument [and]Listing [as attorney Bonnie
Winterbottom in ABC’s ”How to Get Away with Murder”]Argument .

Coordination Scope We annotate cases where the scope of a coordination may be
interpreted differently and thus lead to a different answer than the expected one. Ques-

tion: Where did I put the marbles?
Passage: I put the marbles in the box and the bowl on the table. Depending on the

interpretation, the marbles were either put both in the box and in the bowl that was on

the table, or the marbles were put in the box and the bowl was put on the table.

Relative clause, adverbial phrase and apposition We annotate cases that require
the correct resolution of relative pronouns, adverbial phrases or appositions in order to
answer a question correctly.

Question: José Saramago and Ivo Andrić were recipients of what award in Literature?
Passage: Ivo Andrić [. . . ] was a Yugoslav novelist, poet and short story writer [who]Relative

won the Nobel Prize in Literature in 1961.



C. ANNOTATION SCHEMA 161

Discourse

Coreference We annotate cases where intra- or inter-sentence coreference and anaphora
need to be resolved in order to retrieve the expected answer.

Question: What is the name of the psychologist who is known as the originator of
social learning theory?
Passage: Albert Bandura OC (born December 4, 1925) is a psychologist who is the
David Starr Jordan Professor Emeritus of Social Science in Psychology at Stanford
University. [. . . ] He is known as the originator of social learning theory and the theo-
retical construct of self-efficacy, and is also responsible for the influential 1961 Bobo
doll experiment.

Ellipsis/Implicit We annotate cases where required information is not explicitly ex-
pressed in the passage.

Question: How many years after producing Happy Days did Beckett produce Rock-
aby?
Passage: [Beckett] produced works [. . . ], including [...], Happy Days [(1961)]Implicit ,
and Rockaby [(1981)]Implicit . (The date in brackets indicates the publication date im-

plicitly.)

C.5 Required Reasoning

Operational Reasoning

We annotate occurrences of the arithmetic operations described below. Operational
reasoning is a type of abstract reasoning, which means that we do not annotate pas-
sages that explicitly state the information required to answer the question, even if the
question’s wording might indicate it. For example, we don’t regard the reasoning in the
question “How many touchdowns did the Giants score in the first half?” as operational
(counting) if the passage states “The Giants scored 2 touchdowns in the first half.”

Bridge We annotate cases where information to answer the question needs to be
gathered from multiple supporting facts, “bridged” by commonly mentioned entities,
concepts or events. This phenomenon is also known as “Multi-hop reasoning” in liter-
ature.

Question: What show does the host of The 2011 Teen Choice Awards ceremony cur-
rently star on?
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Passage: [. . . ] The 2011 Teen Choice Awards ceremony, hosted by [Kaley Cuoco]Entity,
aired live on August 7, 2011 at 8/7c on Fox. [. . . ] [Kaley Christine Cuoco]Entity is an
American actress. Since 2007, she has starred as Penny on the CBS sitcom ”The
Big Bang Theory”, for which she has received Satellite, Critics’ Choice, and People’s
Choice Awards.

Comparison We annotate questions where entities, concepts or events needs to be
compared with regard to their properties in order to answer a question.

Question: What year was the alphabetically first writer of Fairytale of New York born?
Passage: ”Fairytale of New York” is a song written by Jem Finer and Shane Mac-
Gowan [. . . ].

Constraint Satisfaction Similar to the Bridge category, we annotate instances that
require the retrieval of entities, concepts or events which additionally satisfy a specified
constraint.

Question: Which Australian singer-songwriter wrote Cold Hard Bitch?
Passage: [“Cold Hard Bitch”] was released in March 2004 and was written by band-
members Chris Cester, Nic Cester, and Cameron Muncey. [. . . ] Nicholas John ”Nic”
Cester is an Australian singer-songwriter and guitarist [. . . ].

Intersection Similar to the Comparison category, we annotate cases where proper-
ties of entities, concepts or events need to be reduced to a minimal common set.

Question: José Saramago and Ivo Andrić were recipients of what award in Literature?

Arithmetic Reasoning

We annotate occurrences of the arithmetic operations described below. Similarly to
operational reasoning, arithmetic reasoning is a type of abstract reasoning, so we an-
notate it analogously. An example for non-arithmetic reasoning is, if the question
states “How many total points were scored in the game?” and the passage expresses
the required information similarly to “There were a total of 51 points scored in the
game.”

Substraction Question: How many points were the Giants behind the Dolphins at
the start of the 4th quarter?
Passage: New York was down 17-10 behind two rushing touchdowns.
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Addition Question: How many total points were scored in the game?
Passage: [. . . ] Kris Brown kicked the winning 48-yard field goal as time expired to
shock the Colts 27-24.

Ordering We annotate questions with this category if it requires the comparison of
(at least) two numerical values (and potentially a selection based on this comparison)
to produce the expected answer.

Question: What happened second: Peace of Paris or appointed governor of Artois?
Passage: He [. . . ] retired from active military service when the war ended in 1763
with the Peace of Paris. He was appointed governor of Artois in 1765.

Count We annotate questions that require the explicit enumeration of events, con-
cepts, facts or entities.

Question: How many touchdowns did the Giants score in the first half?
Passage: In the second quarter, the Giants took the lead with RB Brandon Jacobs
getting a 6-yard and a 43-yard TD run [. . . ].

Other We annotate any other arithmetic operation that does not fall into any of the
above categories with this label.

Question: How many points did the Ravens score on average?
Passage: Baltimore managed to beat the Jets 10-9 on the 2010 opener [. . . ]. The
Ravens rebounded [. . . ], beating Cleveland 24-17 in Week 3 and then Pittsburgh 17-14
in Week 4. [. . . ] Next, the Ravens hosted Miami and won 26-10, breaking that teams
4-0 road streak.

Linguistic Reasoning

Negations We annotate cases where the information in the passage needs to be negated
in order to conclude the correct answer.

Question: How many percent are not Marriage couples living together?
Passage: [. . . ] 46.28% were Marriage living together. [. . . ]

Conjunctions and Disjunctions We annotate occurrences where in order to con-
clude the answer logical conjunction or disjunction needs to be resolved.

Question: Is dad in the living room?
Passage: Dad is either in the kitchen or in the living room.
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Conditionals We annotate cases where the the expected answer is guarded by a con-
dition. In order to arrive at the answer, the inspection whether the condition holds is
required.

Question: How many eggs did I buy?
Passage: I am going to buy eggs. If you want some, too, I will buy 6, if not I will buy
3. You didn’t want any.

Quantification We annotate occurrences where it is required to understand the con-
cept of quantification (existential and universal) in order to determine the correct an-
swer.

Question: How many presents did Susan receive?
Passage: On the day of the party, all five friends showed up. [Each friend]Quanti f ication

had a present for Susan.

Other types of reasoning

Temporal We annotate cases where understanding about the succession is required
in order to derive an answer. Similar to arithmetic and operational reasoning, we do
not annotate questions where the required information is expressed explicitly in the
passage.

Question: Where is the ball?
Passage: I take the ball. I go to the kitchen after going to the living room. I drop the
ball. I go to the garden.

Spatial Similarly to temporal, we annotate cases where understanding about direc-
tions, environment and spatiality is required in order to arrive at the correct conclusion.

Question: What is the 2010 population of the city 2.1 miles southwest of Marietta Air
Force Station?
Passage: [Marietta Air Force Station] is located 2.1 mi northeast of Smyrna, Georgia.

Causal We annotate occurrences where causal (i.e. cause-effect) reasoning between
events, entities or concepts is required to correctly answer a question. We do not
annotate questions as causal if passages explicitly reveal the relationship in a “effect
because cause” manner. For example we don’t annotate “Why do men have a hands off
policy when it comes to black women’s hair?” as causal, even if the wording indicates
it, because the corresponding passage immideately reveals the relationship by stating
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“Because women spend so much time and money on their hair, Rock says men are
forced to adopt a hands-off policy.”.

Question: Why did Sam stop Mom from making four sandwich?
Passage: [. . . ] There are three of us, so we need three sandwiches. [. . . ]

By Exclusion We annotate occurrences (in the multiple-choice setting) where there
is not enough information present to directly determine the expected answer, and the
expected answer can only be assumed by excluding alternatives.

Fill-in-the-gap-query: Calls for a withdrawal of investment in Israel have also inten-
sified because of its continuing occupation of @placeholder territories – something
which is illegal under international law.
Answer Choices Benjamin Netanyahu, Paris, [Palestinian]Answer, French, Israeli, Part-
ner’s, West Bank, Telecoms, Orange

Information Retrieval We collect cases that don’t fall under any of the described
categories and where the answer can be directly retrieved from the passage under this
category.

Question: Officers were fatally shot where?
Passage: The Lakewood police officers [...] were fatally shot November 29 [in a coffee
shop near Lakewood]Answer.

C.6 Knowledge

We recognise passages that do not contain the required information in order to answer a
question as expected. These non self-sufficient passages require models to incorporate
some form of external knowledge. We distinguish between factual and common sense
knowledge.

Factual

We annotate the dependence on factual knowledge – knowledge that can clearly be
stated as a set facts – from the domains listed below.

Cultural/Historic Question: What are the details of the second plot on Alexander’s
life in the Central Asian campaign?
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Passage: Later, in the Central Asian campaign, a second plot against his life was re-
vealed, this one instigated by his own royal pages. His official historian, Callisthenes
of Olynthus, was implicated in the plot; however, historians have yet to reach a con-
sensus regarding this involvement.
Expected Answer: Unsuccessful

Geographical/Political Fill-in-the-gap-query: Calls for a withdrawal of investment
in Israel have also intensified because of its continuing occupation of @placeholder
territories – something which is illegal under international law.
Passage: [. . . ] But Israel lashed out at the decision, which appeared to be related to
Partner’s operations in the occupied West Bank. [. . . ]
Expected Answer: Palestinian

Legal Question: [. . . ] in part due to @placeholder – the 1972 law that increased
opportunities for women in high school and college athletics – and a series of court
decisions.
Passage: [. . . ] Title IX helped open opportunity to women too; Olympic hopeful
Marlen Exparza one example. [. . . ]
Expected Answer: Title IX

Technical/Scientific Question: What are some renewable resources?
Passage: [. . . ] plants are not mentioned in the passage [. . . ]
Expected Answer: Fish, plants

Other Domain Specific Question: Which position scored the shortest touchdown of
the game?
Passage: [. . . ] However, Denver continued to pound away as RB Cecil Sapp got a
4-yard TD run, while kicker Jason Elam got a 23-yard field goal. [. . . ]
Expected Answer: RB

Intuitive

We annotate the requirement of intuitive knowledge in order to answer a question com-
mon sense knowledge. Opposed to factual knowledge, it is hard to express as a set of
facts.
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Question: Why would Alexander have to declare an heir on his deathbed?
Passage: According to Diodorus, Alexander’s companions asked him on his deathbed
to whom he bequeathed his kingdom; his laconic reply was ”toi kratistoi”–”to the
strongest”.
Expected Answer: So that people know who to follow.
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D Detailed annotation results

Here, we report all our annotations in detail, with absolute and relative numbers. Note,
that numbers from sub-categories do not necessarily add up to the higher level category,
because an example might contain features from the same higher-level category. (for
example if an example requires both Bridge and Constraint type of reasoning, it will
still count as a single example towards the Operations counter).
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E Full Example

Passage 1: Marietta Air Force Station
Marietta Air Force Station (ADC ID: M-111, NORAD ID: Z-111) is a closed United

States Air Force General Surveillance Radar station. It is located 2.1 mi northeast of

Smyrna, Georgia. It was closed in 1968.

Passage 2: Smyrna, Georgia
Smyrna is a city northwest of the neighborhoods of Atlanta. It is in the inner ring of the

Atlanta Metropolitan Area. As of the 2010 census, the city had a population of 51,271.

The U.S. Census Bureau estimated the population in 2013 to be 53,438. It is included

in the Atlanta-Sandy Springs-Roswell MSA, which is included in the Atlanta-Athens-

Clarke-Sandy Springs CSA. Smyrna grew by 28% between the years 2000 and 2012. It

is historically one of the fastest growing cities in the State of Georgia, and one of the

most densely populated cities in the metro area.

Passage 3: RAF Warmwell
RAF Warmwell is a former Royal Air Force station near Warmwell in Dorset, Eng-

land from 1937 to 1946, located about 5 miles east-southeast of Dorchester; 100 miles

southwest of London.

Passage 4: Camp Pedricktown radar station
The Camp Pedricktown Air Defense Base was a Cold War Missile Master installa-

tion with an Army Air Defense Command Post, and associated search, height finder,

and identification friend or foe radars. The station’s radars were subsequently re-

placed with radars at Gibbsboro Air Force Station 15 miles away. The obsolete Martin

AN/FSG-1 Antiaircraft Defense System,a 1957-vintage vacuum tube computer, was re-

moved after command of the defense area was transferred to the command post at

Highlands Air Force Station near New York City. The Highlands AFS command post

controlled the combined New York-Philadelphia Defense Area.

Passage 5: 410th Bombardment Squadron
The 410th Bombardment Squadron is an inactive United States Air Force unit. It was

last assigned to the 94th Bombardment Group. It was inactivated at Marietta Air Force

Base, Georgia on 20 March 1951.
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Passage 6: RAF Cottesmore
Royal Air Force Station Cottesmore or more simply RAF Cottesmore is a former Royal

Air Force station in Rutland, England, situated between Cottesmore and Market Over-

ton. The station housed all the operational Harrier GR9 squadrons in the Royal Air

Force, and No. 122 Expeditionary Air Wing. On 15 December 2009 it was announced

that the station would close in 2013 as part of defence spending cuts, along with the

retirement of the Harrier GR9 and the disbandment of Joint Force Harrier. However

the formal closing ceremony took place on 31 March 2011 with the airfield becoming

a satellite to RAF Wittering until March 2012.

Passage 7: Stramshall
Stramshall is a village within the civil parish of Uttoxeter Rural in the county of

Staffordshire, England. The village is 2.1 miles north of the town of Uttoxeter, 16.3

miles north east of Stafford and 143 miles north west of London. The village lies 0.8

miles north of the A50 that links Warrington to Leicester. The nearest railway station is

at Uttoxeter for the Crewe to Derby line. The nearest airport is East Midlands Airport.

Passage 8: Topsham Air Force Station
Topsham Air Force Station is a closed United States Air Force station. It is located 2.1

mi north of Brunswick, Maine. It was closed in 1969

Passage 9: 302d Air Division
The 302d Air Division is an inactive United States Air Force Division. Its last assign-

ment was with Fourteenth Air Force at Marietta Air Force Base, Georgia, where it was

inactivated on 27 June 1949.

Passage 10: Eldorado Air Force Station
Eldorado Air Force Station located 35 miles south of San Angelo, Texas was one of

the four unique AN/FPS-115 PAVE PAWS, early-warning phased-array radar systems.

The 8th Space Warning Squadron, 21st Space Wing, Air Force Space Command oper-

ated at Eldorado Air Force Station.

Question: What is the 2010 population of the city 2.1 miles southwest of Marietta Air

Force Station?

Expected Answer 51,271
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