379,581 research outputs found

    The importance of circulating tumor products as „liquid biopsies” in colorectal cancer

    Get PDF
    Liquid biopsies represent an array of plasma analysis tests that are studied to evaluate and identify circulating tumor products, especially circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA). Examining such biomarkers in the plasma of colorectal cancer patients has attracted attention due to its clinical significance in the treatment of malignant diseases. Given that tissue samples are sometimes challenging to procure or unsatisfactory for genomic profiling from patients with colorectal cancer, trustworthy biomarkers are mandatory for guiding treatment, monitoring therapeutic response, and detecting recurrence. This review considers the relevance of flowing tumor products like circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating messenger RNA (mRNA), circulating micro RNA (miRNA), circulating exosomes, and tumor educated platelets (TEPs) for patients with colorectal cancer

    Dietary alterations modulate the microRNA 29/30 and IGF-1/AKT signaling axis in breast Cancer liver metastasis.

    Get PDF
    Background: Metastatic cancer is incurable and understanding the molecular underpinnings is crucial to improving survival for our patients. The IGF-1/Akt signaling pathway is often impaired in cancer leading to its progression and metastases. Diet modification is known to alter the IGF-1/Akt pathway and affect the expression of microRNA involved in tumor initiation, growth and metastases. Liver metastases are one of the most common type of metastases in breast and colon cancer. In the present study, we looked at the effect of diet modification on the expression of microRNA in normal liver and liver with breast cancer metastases using in vivo model. Methodology: 6-month-old C57BL/6 J mice were put on either an ad libitum (AL) diet, or 40% calorie restricted (CR) diet or were fasted for 24 h (FA) before sacrifice. MicroRNA array analysis, western blot and qRT-PCR were performed using liver tissue to compare the treatment groups. A breast cancer model was also used to study the changes in microRNA expression in liver of a group of BALB/c mice orthotopically injected with 4 T1 cells in the mammary fat pad, put on either an AL or 30% CR diet. Liver and primary tumor tissues were used to perform qRT-PCR to compare the treatment groups. Results: MicroRNA array analysis showed significant changes in miRNA expression in both CR and FA conditions in normal liver. Expression of miR-29 and miR-30 family members was increased in both CR and FA. Western blot analysis of the normal liver tissue showed that CR and FA downregulated the IGF-1/Akt pathway and qRT-PCR showed that the expression of miR-29b, miR-29c, miR-30a and miR-30b were increased with CR and FA. Liver tissue collected from mice in the breast cancer model showed an increase in expression of miR-29b, miR-29c and miR-30b while tumor tissue showed increased expression of miR-29c, miR-30a and miR-30b. Discussion: Members of the miR-29 family are known to target and suppress IGF-1, while members of the miR-30 family are known to target and suppress both IGF-1 and IGF-1R. In the present study, we observe that calorie restriction increased the expression of miR-29 and miR-30 in both the normal liver as well as the liver with breast cancer metastases. These findings suggest that dietary alterations may play a role in the treatment of liver metastasis, which should be evaluated further

    Laser Based Mid-Infrared Spectroscopic Imaging – Exploring a Novel Method for Application in Cancer Diagnosis

    Get PDF
    A number of biomedical studies have shown that mid-infrared spectroscopic images can provide both morphological and biochemical information that can be used for the diagnosis of cancer. Whilst this technique has shown great potential it has yet to be employed by the medical profession. By replacing the conventional broadband thermal source employed in modern FTIR spectrometers with high-brightness, broadly tuneable laser based sources (QCLs and OPGs) we aim to solve one of the main obstacles to the transfer of this technology to the medical arena; namely poor signal to noise ratios at high spatial resolutions and short image acquisition times. In this thesis we take the first steps towards developing the optimum experimental configuration, the data processing algorithms and the spectroscopic image contrast and enhancement methods needed to utilise these high intensity laser based sources. We show that a QCL system is better suited to providing numerical absorbance values (biochemical information) than an OPG system primarily due to the QCL pulse stability. We also discuss practical protocols for the application of spectroscopic imaging to cancer diagnosis and present our spectroscopic imaging results from our laser based spectroscopic imaging experiments of oesophageal cancer tissue

    Differential Gene Expression of Human Mast cell Activation Reveals Gene profiles of Innate and Adaptive Immunity.

    Get PDF
    High-density oligonucleotide microarray is a promising approach for high throughput analysis. It has been extensively used in many areas of biomedical research. Immunoglobulin E (IgE) mediated allergic response (type-1 hypersensitivity) is one of the most powerful reactions of the immune system. Tissue Mast Cells (MCs) and circulating basophils are the major effector cells in these reactions. By dissecting the regulatory circuitry of mast cells by analyzing the genome wide effects of antigen stimulation triggered by FcεRI, offers a potential for finding novel genes as ‘targets’ for therapeutic intervention. In this work, we tried to study the gene expression pattern in IgE sensitized and FcεRI cross linked cord blood derived MCs using one of the latest techniques, high density oligonucleotide expression probe array (HG-Focus array, Gene Chip, Affymetrix, Santa Clara, CA). Microarray hybridization of RNA from cord blood derived MCs revealed coordinated changes in gene expression in response to IgE stimulation and receptor cross linking at different time points. Among the most prominent findings, we observed 2 to 32-fold increased expression of different transcripts. Real-time PCR confirmed reliability of microarray data. This enabled us to classify and cluster genes by functional families as well as to understand known genes in signaling pathways. These results defined a list of primary candidates for finding novel genes as ‘targets’ for therapeutic intervention

    Identification of Melatonin-Regulated Genes in the Ovine Pituitary Pars Tuberalis, a Target Site for Seasonal Hormone Control

    Get PDF
    The pars tuberalis (PT) of the pituitary gland expresses a high density of melatonin (MEL) receptors and is believed to regulate seasonal physiology by decoding changes in nocturnal melatonin secretion. Circadian clock genes are known to be expressed in the PT in response to the decline (Per1) and onset (Cry1) of MEL secretion, but to date little is known of other molecular changes in this key MEL target site. To identify transcriptional pathways that may be involved in the diurnal and photoperiod-transduction mechanism, we performed a whole genome transcriptome analysis using PT RNA isolated from sheep culled at three time points over the 24-h cycle under either long or short photoperiods. Our results reveal 153 transcripts where expression differs between photoperiods at the light-dark transition and 54 transcripts where expression level was more globally altered by photoperiod (all time points combined). Cry1 induction at night was associated with up-regulation of genes coding for NeuroD1 (neurogenic differentiation factor 1), Pbef / Nampt (nicotinamide phosphoribosyltransferase) , Hif1α (hypoxia-inducible factor-1α), and Kcnq5 (K channel) and down-regulation of Rorβ, a key clock gene regulator. Using in situ hybridization, we confirmed day-night differences in expression for Pbef / Nampt, NeuroD1, and Rorβ in the PT. Treatment of sheep with MEL increased PT expression for Cry1, Pbef / Nampt, NeuroD1, and Hif1α, but not Kcnq5. Our data thus reveal a cluster of Cry1-associated genes that are acutely responsive to MEL and novel transcriptional pathways involved in MEL action in the PT
    corecore