75,503 research outputs found

    Timing in chemical reaction networks

    Get PDF
    Chemical reaction networks (CRNs) formally model chemistry in a well-mixed solution. CRNs are widely used to describe information processing occurring in natural cellular regulatory networks, and with upcoming advances in synthetic biology, CRNs are a promising programming language for the design of artificial molecular control circuitry. Due to a formal equivalence between CRNs and a model of distributed computing known as population protocols, results transfer readily between the two models. We show that if a CRN respects finite density (at most O(n) additional molecules can be produced from n initial molecules), then starting from any dense initial configuration (all molecular species initially present have initial count Omega(n), where n is the initial molecular count and volume), then every producible species is produced in constant time with high probability. This implies that no CRN obeying the stated constraints can function as a timer, able to produce a molecule, but doing so only after a time that is an unbounded function of the input size. This has consequences regarding an open question of Angluin, Aspnes, and Eisenstat concerning the ability of population protocols to perform fast, reliable leader election and to simulate arbitrary algorithms from a uniform initial state

    Evolution of associative learning in chemical networks

    Get PDF
    Organisms that can learn about their environment and modify their behaviour appropriately during their lifetime are more likely to survive and reproduce than organisms that do not. While associative learning – the ability to detect correlated features of the environment – has been studied extensively in nervous systems, where the underlying mechanisms are reasonably well understood, mechanisms within single cells that could allow associative learning have received little attention. Here, using in silico evolution of chemical networks, we show that there exists a diversity of remarkably simple and plausible chemical solutions to the associative learning problem, the simplest of which uses only one core chemical reaction. We then asked to what extent a linear combination of chemical concentrations in the network could approximate the ideal Bayesian posterior of an environment given the stimulus history so far? This Bayesian analysis revealed the ’memory traces’ of the chemical network. The implication of this paper is that there is little reason to believe that a lack of suitable phenotypic variation would prevent associative learning from evolving in cell signalling, metabolic, gene regulatory, or a mixture of these networks in cells

    Identification of complex biological network classes using extended correlation analysis

    Get PDF
    Modeling and analysis of complex biological networks necessitates suitable handling of data on a parallel scale. Using the IkB-NF-kB pathway model and a basis of sensitivity analysis, analytic methods are presented, extending correlation from the network kinetic reaction rates to that of the rate reactions. Alignment of correlated processed components, vastly outperforming correlation of the data source, advanced sets of biological classes possessing similar network activities. Additional construction generated a naturally structured, cardinally based system for component-specific investigation. The computationally driven procedures are described, with results demonstrating viability as mechanisms useful for fundamental oscillatory network activity investigation

    Stochastic Representations of Ion Channel Kinetics and Exact Stochastic Simulation of Neuronal Dynamics

    Full text link
    In this paper we provide two representations for stochastic ion channel kinetics, and compare the performance of exact simulation with a commonly used numerical approximation strategy. The first representation we present is a random time change representation, popularized by Thomas Kurtz, with the second being analogous to a "Gillespie" representation. Exact stochastic algorithms are provided for the different representations, which are preferable to either (a) fixed time step or (b) piecewise constant propensity algorithms, which still appear in the literature. As examples, we provide versions of the exact algorithms for the Morris-Lecar conductance based model, and detail the error induced, both in a weak and a strong sense, by the use of approximate algorithms on this model. We include ready-to-use implementations of the random time change algorithm in both XPP and Matlab. Finally, through the consideration of parametric sensitivity analysis, we show how the representations presented here are useful in the development of further computational methods. The general representations and simulation strategies provided here are known in other parts of the sciences, but less so in the present setting.Comment: 39 pages, 6 figures, appendix with XPP and Matlab cod

    Petri nets for systems and synthetic biology

    Get PDF
    We give a description of a Petri net-based framework for modelling and analysing biochemical pathways, which uni¯es the qualita- tive, stochastic and continuous paradigms. Each perspective adds its con- tribution to the understanding of the system, thus the three approaches do not compete, but complement each other. We illustrate our approach by applying it to an extended model of the three stage cascade, which forms the core of the ERK signal transduction pathway. Consequently our focus is on transient behaviour analysis. We demonstrate how quali- tative descriptions are abstractions over stochastic or continuous descrip- tions, and show that the stochastic and continuous models approximate each other. Although our framework is based on Petri nets, it can be applied more widely to other formalisms which are used to model and analyse biochemical networks
    corecore