830 research outputs found

    Time-varying Reeb graphs: a topological framework supporting the analysis of continuous time-varying data

    Get PDF
    I present time-varying Reeb graphs as a topological framework to support the analysis of continuous time-varying data. Such data is captured in many studies, including computational fluid dynamics, oceanography, medical imaging, and climate modeling, by measuring physical processes over time, or by modeling and simulating them on a computer. Analysis tools are applied to these data sets by scientists and engineers who seek to understand the underlying physical processes. A popular tool for analyzing scientific datasets is level sets, which are the points in space with a fixed data value s. Displaying level sets allows the user to study their geometry, their topological features such as connected components, handles, and voids, and to study the evolution of these features for varying s. For static data, the Reeb graph encodes the evolution of topological features and compactly represents topological information of all level sets. The Reeb graph essentially contracts each level set component to a point. It can be computed efficiently, and it has several uses: as a succinct summary of the data, as an interface to select meaningful level sets, as a data structure to accelerate level set extraction, and as a guide to remove noise. I extend these uses of Reeb graphs to time-varying data. I characterize the changes to Reeb graphs over time, and develop an algorithm that can maintain a Reeb graph data structure by tracking these changes over time. I store this sequence of Reeb graphs compactly, and call it a time-varying Reeb graph. I augment the time-varying Reeb graph with information that records the topology of level sets of all level values at all times, that maintains the correspondence of level set components over time, and that accelerates the extraction of level sets for a chosen level value and time. Scientific data sampled in space-time must be extended everywhere in this domain using an interpolant. A poor choice of interpolant can create degeneracies that are difficult to resolve, making construction of time-varying Reeb graphs impractical. I investigate piecewise-linear, piecewise-trilinear, and piecewise-prismatic interpolants, and conclude that piecewise-prismatic is the best choice for computing time-varying Reeb graphs. Large Reeb graphs must be simplified for an effective presentation in a visualization system. I extend an algorithm for simplifying static Reeb graphs to compute simplifications of time-varying Reeb graphs as a first step towards building a visualization system to support the analysis of time-varying data

    Time-varying Reeb graphs: a topological framework supporting the analysis of continuous time-varying data

    Get PDF
    I present time-varying Reeb graphs as a topological framework to support the analysis of continuous time-varying data. Such data is captured in many studies, including computational fluid dynamics, oceanography, medical imaging, and climate modeling, by measuring physical processes over time, or by modeling and simulating them on a computer. Analysis tools are applied to these data sets by scientists and engineers who seek to understand the underlying physical processes. A popular tool for analyzing scientific datasets is level sets, which are the points in space with a fixed data value s. Displaying level sets allows the user to study their geometry, their topological features such as connected components, handles, and voids, and to study the evolution of these features for varying s. For static data, the Reeb graph encodes the evolution of topological features and compactly represents topological information of all level sets. The Reeb graph essentially contracts each level set component to a point. It can be computed efficiently, and it has several uses: as a succinct summary of the data, as an interface to select meaningful level sets, as a data structure to accelerate level set extraction, and as a guide to remove noise. I extend these uses of Reeb graphs to time-varying data. I characterize the changes to Reeb graphs over time, and develop an algorithm that can maintain a Reeb graph data structure by tracking these changes over time. I store this sequence of Reeb graphs compactly, and call it a time-varying Reeb graph. I augment the time-varying Reeb graph with information that records the topology of level sets of all level values at all times, that maintains the correspondence of level set components over time, and that accelerates the extraction of level sets for a chosen level value and time. Scientific data sampled in space-time must be extended everywhere in this domain using an interpolant. A poor choice of interpolant can create degeneracies that are difficult to resolve, making construction of time-varying Reeb graphs impractical. I investigate piecewise-linear, piecewise-trilinear, and piecewise-prismatic interpolants, and conclude that piecewise-prismatic is the best choice for computing time-varying Reeb graphs. Large Reeb graphs must be simplified for an effective presentation in a visualization system. I extend an algorithm for simplifying static Reeb graphs to compute simplifications of time-varying Reeb graphs as a first step towards building a visualization system to support the analysis of time-varying data

    Book embeddings of Reeb graphs

    Full text link
    Let XX be a simplicial complex with a piecewise linear function f:X→Rf:X\to\mathbb{R}. The Reeb graph Reeb(f,X)Reeb(f,X) is the quotient of XX, where we collapse each connected component of f−1(t)f^{-1}(t) to a single point. Let the nodes of Reeb(f,X)Reeb(f,X) be all homologically critical points where any homology of the corresponding component of the level set f−1(t)f^{-1}(t) changes. Then we can label every arc of Reeb(f,X)Reeb(f,X) with the Betti numbers (ÎČ1,ÎČ2,
,ÎČd)(\beta_1,\beta_2,\dots,\beta_d) of the corresponding dd-dimensional component of a level set. The homology labels give more information about the original complex XX than the classical Reeb graph. We describe a canonical embedding of a Reeb graph into a multi-page book (a star cross a line) and give a unique linear code of this book embedding.Comment: 12 pages, 5 figures, more examples will be at http://kurlin.or

    Barcode Embeddings for Metric Graphs

    Full text link
    Stable topological invariants are a cornerstone of persistence theory and applied topology, but their discriminative properties are often poorly-understood. In this paper we study a rich homology-based invariant first defined by Dey, Shi, and Wang, which we think of as embedding a metric graph in the barcode space. We prove that this invariant is locally injective on the space of metric graphs and globally injective on a GH-dense subset. Moreover, we show that is globally injective on a full measure subset of metric graphs, in the appropriate sense.Comment: The newest draft clarifies the proofs in Sections 7 and 8, and provides improved figures therein. It also includes a results section in the introductio

    Multimapper: Data Density Sensitive Topological Visualization

    Full text link
    Mapper is an algorithm that summarizes the topological information contained in a dataset and provides an insightful visualization. It takes as input a point cloud which is possibly high-dimensional, a filter function on it and an open cover on the range of the function. It returns the nerve simplicial complex of the pullback of the cover. Mapper can be considered a discrete approximation of the topological construct called Reeb space, as analysed in the 11-dimensional case by [Carriere et al.,2018]. Despite its success in obtaining insights in various fields such as in [Kamruzzaman et al., 2016], Mapper is an ad hoc technique requiring lots of parameter tuning. There is also no measure to quantify goodness of the resulting visualization, which often deviates from the Reeb space in practice. In this paper, we introduce a new cover selection scheme for data that reduces the obscuration of topological information at both the computation and visualisation steps. To achieve this, we replace global scale selection of cover with a scale selection scheme sensitive to local density of data points. We also propose a method to detect some deviations in Mapper from Reeb space via computation of persistence features on the Mapper graph.Comment: Accepted at ICDM

    Surface networks

    Get PDF
    © Copyright CASA, UCL. The desire to understand and exploit the structure of continuous surfaces is common to researchers in a range of disciplines. Few examples of the varied surfaces forming an integral part of modern subjects include terrain, population density, surface atmospheric pressure, physico-chemical surfaces, computer graphics, and metrological surfaces. The focus of the work here is a group of data structures called Surface Networks, which abstract 2-dimensional surfaces by storing only the most important (also called fundamental, critical or surface-specific) points and lines in the surfaces. Surface networks are intelligent and “natural ” data structures because they store a surface as a framework of “surface ” elements unlike the DEM or TIN data structures. This report presents an overview of the previous works and the ideas being developed by the authors of this report. The research on surface networks has fou

    The Topology ToolKit

    Full text link
    This system paper presents the Topology ToolKit (TTK), a software platform designed for topological data analysis in scientific visualization. TTK provides a unified, generic, efficient, and robust implementation of key algorithms for the topological analysis of scalar data, including: critical points, integral lines, persistence diagrams, persistence curves, merge trees, contour trees, Morse-Smale complexes, fiber surfaces, continuous scatterplots, Jacobi sets, Reeb spaces, and more. TTK is easily accessible to end users due to a tight integration with ParaView. It is also easily accessible to developers through a variety of bindings (Python, VTK/C++) for fast prototyping or through direct, dependence-free, C++, to ease integration into pre-existing complex systems. While developing TTK, we faced several algorithmic and software engineering challenges, which we document in this paper. In particular, we present an algorithm for the construction of a discrete gradient that complies to the critical points extracted in the piecewise-linear setting. This algorithm guarantees a combinatorial consistency across the topological abstractions supported by TTK, and importantly, a unified implementation of topological data simplification for multi-scale exploration and analysis. We also present a cached triangulation data structure, that supports time efficient and generic traversals, which self-adjusts its memory usage on demand for input simplicial meshes and which implicitly emulates a triangulation for regular grids with no memory overhead. Finally, we describe an original software architecture, which guarantees memory efficient and direct accesses to TTK features, while still allowing for researchers powerful and easy bindings and extensions. TTK is open source (BSD license) and its code, online documentation and video tutorials are available on TTK's website
    • 

    corecore