12 research outputs found

    Predict Daily Life Stress based on Heart Rate Variability

    Get PDF
    Department of Human Factors EngineeringThe purpose of this study is to investigate the feasibility of predicting a daily mental stress level from analyzing Heart Rate Variability (HRV) by using a Photoplethysmography (PPG) sensor which is integrated in the wristband-type wearable device. In this experiment, each participant was asked to measure their own PPG signals for 30 seconds, three times a day (at noon, 6 P.M, and 10 minutes before going to sleep) for a week. And 10 minutes before going to sleep, all participants were asked to self-evaluate their own daily mental stress level using Perceived Stress Scale (PSS). The recorded signals were transmitted and stored at each participant???s smartphone via Bluetooth Low Energy (BLE) communication by own-made mobile application. The preprocessing procedure was used to remove PPG signal artifacts in order to make better performance for detecting each pulse peak point at PPG signal. In this preprocessing, three- level-bandpass filtering which consisted three different pass band range bandpass filters was used. In this study, frequency domain HRV analysis feature that the ratio of low-frequency (0.04Hz ~ 0.15Hz) to high-frequency (0.15Hz ~ 0.4Hz) power value was used. In frequency domain analysis, autoregressive (AR) model was used, because this model has higher resolution than that of Fast Fourier Transform (FFT). The accuracy of this prediction was 86.35% on average of all participants. Prediction result was calculated from the leave-one-out validation. The IoT home appliances are arranged according to the result of this prediction algorithm. This arrangement is offering optimized user???s relaxation. Also, this algorithm can help acute stress disorder patients to concentrate on getting treatment.clos

    Methodological Role of Mathematics to Estimate Human Blood Pressure Through Biosensors

    Get PDF
    This paper presents a non-invasive technique and cuff less method for blood pressure measurement with a hardware prototype implementation. The sophisticated feature called pulse transit time (PTT) is extracted and investigated with a development of a smart system which consists of ECG, PPG sensor to estimate the systolic and diastolic blood pressure with support of advanced signal processing methodologies. The proposed method experiments have been carried out in hospital environment and tested with real time patients to validate the proposed method. The maximum error percentage of the proposed system has been shown to be 5.3% of systolic blood pressure (mmHg) and 4.7% of diastolic blood pressure (mmHg). This system also allows the monitoring of patient hypertension and overcome the limitation of cuff-based hospitalized measurement system

    Baroreflex sensitivity measured by pulse photoplethysmography

    Get PDF
    Novel methods for assessing baroreflex sensitivity (BRS) using only pulse photoplethysmography (PPG) signals are presented. Proposed methods were evaluated with a data set containing electrocardiogram (ECG), blood pressure (BP), and PPG signals from 17 healthy subjects during a tilt table test. The methods are based on a surrogate of a index, which is defined as the power ratio of RR interval variability (RRV) and that of systolic arterial pressure series variability (SAPV). The proposed a index surrogates use pulse-to-pulse interval series variability (PPV) as a surrogate of RRV, and different morphological features of the PPG pulse which have been hypothesized to be related to BP, as series surrogates of SAPV. A time-frequency technique was used to assess BRS, taking into account the non-stationarity of the protocol. This technique identifies two time-varying frequency bands where RRV and SAPV (or their surrogates) are expected to be coupled: the low frequency (LF, inside 0.04–0.15 Hz range), and the high frequency (HF, inside 0.15–0.4 Hz range) bands. Furthermore, time-frequency coherence is used to identify the time intervals when the RRV and SAPV (or their surrogates) are coupled. Conventional a index based on RRV and SAPV was used as Gold Standard. Spearman correlation coefficients between conventional a index and its PPG-based surrogates were computed and the paired Wilcoxon statistical test was applied in order to assess whether the indices can find significant differences (p < 0.05) between different stages of the protocol. The highest correlations with the conventional a index were obtained by the a-index-surrogate based on PPV and pulse up-slope (PUS), with 0.74 for LF band, and 0.81 for HF band. Furthermore, this index found significant differences between rest stages and tilt stage in both LF and HF bands according to the paired Wilcoxon test, as the conventional a index also did. These results suggest that BRS changes induced by the tilt test can be assessed with high correlation by only a PPG signal using PPV as RRV surrogate, and PPG morphological features as SAPV surrogates, being PUS the most convenient SAPV surrogate among the studied ones

    Baroreflex Sensitivity Measured by Pulse Photoplethysmography

    Get PDF
    Novel methods for assessing baroreflex sensitivity (BRS) using only pulse photoplethysmography (PPG) signals are presented. Proposed methods were evaluated with a data set containing electrocardiogram (ECG), blood pressure (BP), and PPG signals from 17 healthy subjects during a tilt table test. The methods are based on a surrogate of α index, which is defined as the power ratio of RR interval variability (RRV) and that of systolic arterial pressure series variability (SAPV). The proposed α index surrogates use pulse-to-pulse interval series variability (PPV) as a surrogate of RRV, and different morphological features of the PPG pulse which have been hypothesized to be related to BP, as series surrogates of SAPV. A time-frequency technique was used to assess BRS, taking into account the non-stationarity of the protocol. This technique identifies two time-varying frequency bands where RRV and SAPV (or their surrogates) are expected to be coupled: the low frequency (LF, inside 0.04–0.15 Hz range), and the high frequency (HF, inside 0.15–0.4 Hz range) bands. Furthermore, time-frequency coherence is used to identify the time intervals when the RRV and SAPV (or their surrogates) are coupled. Conventional α index based on RRV and SAPV was used as Gold Standard. Spearman correlation coefficients between conventional α index and its PPG-based surrogates were computed and the paired Wilcoxon statistical test was applied in order to assess whether the indices can find significant differences (p < 0.05) between different stages of the protocol. The highest correlations with the conventional α index were obtained by the α-index-surrogate based on PPV and pulse up-slope (PUS), with 0.74 for LF band, and 0.81 for HF band. Furthermore, this index found significant differences between rest stages and tilt stage in both LF and HF bands according to the paired Wilcoxon test, as the conventional α index also did. These results suggest that BRS changes induced by the tilt test can be assessed with high correlation by only a PPG signal using PPV as RRV surrogate, and PPG morphological features as SAPV surrogates, being PUS the most convenient SAPV surrogate among the studied ones

    Baroreflex Sensitivity Measured by Pulse Photoplethysmography

    Get PDF
    Novel methods for assessing baroreflex sensitivity (BRS) using only pulse photoplethysmography (PPG) signals are presented. Proposed methods were evaluated with a data set containing electrocardiogram (ECG), blood pressure (BP), and PPG signals from 17 healthy subjects during a tilt table test. The methods are based on a surrogate of α index, which is defined as the power ratio of RR interval variability (RRV) and that of systolic arterial pressure series variability (SAPV). The proposed α index surrogates use pulse-to-pulse interval series variability (PPV) as a surrogate of RRV, and different morphological features of the PPG pulse which have been hypothesized to be related to BP, as series surrogates of SAPV. A time-frequency technique was used to assess BRS, taking into account the non-stationarity of the protocol. This technique identifies two time-varying frequency bands where RRV and SAPV (or their surrogates) are expected to be coupled: the low frequency (LF, inside 0.04–0.15 Hz range), and the high frequency (HF, inside 0.15–0.4 Hz range) bands. Furthermore, time-frequency coherence is used to identify the time intervals when the RRV and SAPV (or their surrogates) are coupled. Conventional α index based on RRV and SAPV was used as Gold Standard. Spearman correlation coefficients between conventional α index and its PPG-based surrogates were computed and the paired Wilcoxon statistical test was applied in order to assess whether the indices can find significant differences (p &lt; 0.05) between different stages of the protocol. The highest correlations with the conventional α index were obtained by the α-index-surrogate based on PPV and pulse up-slope (PUS), with 0.74 for LF band, and 0.81 for HF band. Furthermore, this index found significant differences between rest stages and tilt stage in both LF and HF bands according to the paired Wilcoxon test, as the conventional α index also did. These results suggest that BRS changes induced by the tilt test can be assessed with high correlation by only a PPG signal using PPV as RRV surrogate, and PPG morphological features as SAPV surrogates, being PUS the most convenient SAPV surrogate among the studied ones

    Cuffless Blood Pressure Monitoring: Estimation of the Waveform and its Prediction Interval

    Get PDF
    Cuffless blood pressure (BP) estimation devices are receiving considerable attention as tools for improving the management of hypertension, a condition that affects 1.13 billion people worldwide. It is an approach that can provide continuous BP monitoring, which is not possible with existing non-invasive tools. Therefore, it yields a more comprehensive picture of the patient’s state. Cuffless BP monitoring relies on surrogate models of BP and the information encoded in alternative physiological measures, such as photoplethysmography (PPG) or electrocardiography (ECG), to continuously estimate BP. Existing models have typically relied upon pulse-wave delay between two arterial segments or other pulse waveform features in the estimation process. However, the models available in the literature (1) provide an estimation of the systolic BP (SBP), diastolic BP (DBP), and mean BP (MAP) only, (2) are validated solely in controlled environments, and (3) do not assign a confidence metric to the estimates. At this point, cuffless methods are not used by clinicians due to their inaccuracy, the validation inadequacy, and/or the unevaluated uncertainty of the existing methods. The first objective of this thesis is to develop a cuffless modeling approach to estimate the BP waveform from ECG and PPG, and extract important BP features, such as the SBP, DBP, and MAP. Access to the full waveform has significant advantages over previous cuffless BP estimation tools in terms of accuracy and access to additional cardiovascular health markers (e.g., cardiac output), as well as potentially providing arterial stiffness. The second objective of this thesis is to validate cuffless BP estimation during activities of daily living, an uncontrolled environment, but also in more challenging physiological conditions such as during exercise. Such validation is important to increase confidence in cuffless BP monitoring, it also helps understand the limitation of the method and how they would affect clinical outcomes. Finally, in an effort to improve confidence in the cuffless BP estimation framework (third objective), a prediction interval (PI) estimation method is introduced. For potential clinical uses, it is imperative to assess the uncertainty of the BP estimate for acute outcome evaluation and it is even more so if cuffless BP is to be employed outside of the clinic. In this thesis, user-specific nonlinear autoregressive models with exogenous inputs (NARX) are implemented using an artificial neural network (ANN) to predict the BP waveforms using ECG and/or PPG signals as inputs. To validate the NARX-based BP estimation framework during activities of daily living, data were collected during six-hours testing phase wherein the participants go about their normal daily living activities. Data are further collected at four-month and six-month time points to validate long-term performance. To broaden the range of BP in the training data, subjects followed a short procedure consisting of sitting, standing, walking, Valsalva maneuvers, and static handgrip exercises. To evaluate the uncertainty of the BP estimates, one-class support vector machines (OCSVM) models are trained to cluster data in terms of the percentage of outliers. New BP estimates are then assigned to a cluster using the OCSVMs hyperplanes, and the PIs are estimated using the BP error standard deviation associated with different training data clusters. The OCSVM is used to estimate the PI for three BP model architectures: NARX models, feedforward ANN models, and pulse arrival time (PAT models). The three BP estimations from the models are fused using the covariance intersection fusion algorithm, which improves BP and PI estimates in comparison with individual model performance. The proposed method models the BP as a dynamical system leading to better accuracy in the estimation of SBP, DBP and MAP when compared to the PAT model. Moreover, the NARX model, with its ability to provide the BP waveform, yields more insight into patient health. The NARX model demonstrates superior accuracy and correlation with “ground truth” SBP and DBP measures compared to the PAT models and a clear advantage in estimating the large range of BP. Preliminary results show that the NARX models can accurately estimate BP even months apart from the training. Preliminary testing suggests that it is robust against variabilities due to sensor placement. The employed model fusion architecture establishes a method for cuffless BP estimation and its PI during activities of daily living that can be used for continuous monitoring and acute hypotension and hypertension detection. The NARX model, with its capacity to estimate a large range of BP, is next tested during moderate and heavy intensity exercise. Participants performed three cycling exercises: a ramp-incremental exercise test to exhaustion, a moderate and a heavy pseudorandom binary sequence exercise tests on an electronically braked cycle ergometer. Subject-specific and population-based NARX models are compared with feedforward ANN models and PAT (and heart rate) models. Population-based NARX models, when trained on 11 participants’ three cycling tests (tested on the participant left out of training), perform better than the other models and show good capability at estimating large changes in MAP. A limitation of the approach is the incapability of the models to track consistent decreases in BP during the exercise caused by a decrease in peripheral resistance since this information is apparently not encoded in either the forehead PPG or ECG signals. Nevertheless, the NARX model shows good precision during the whole 21 minutes testing window, a precision that is increased when using a shorter evaluation time window, and that can potentially be even further increased if trained on more data. The validation protocols and the use of a confidence metric developed in this thesis is of great value for such health monitoring application. Through such methodology, it is hoped that cuffless BP estimation becomes, one day, a well-established BP measurement method

    Signal processing techniques for cardiovascular monitoring applications using conventional and video-based photoplethysmography

    Get PDF
    Photoplethysmography (PPG)-based monitoring devices will probably play a decisive role in healthcare environment of the future, which will be preventive, predictive, personalized and participatory. Indeed, this optical technology presents several practical advantages over gold standard methods based on electrocardiography, because PPG wearable devices can be comfortably used for long-term continuous monitoring during daily life activities. Contactless video-based PPG technique, also known as imaging photoplethysmography (iPPG), has also attracted much attention recently. In that case, the cardiac pulse is remotely measured from the subtle skin color changes resulting from the blood circulation, using a simple video camera. PPG/iPPG have a lot of potential for a wide range of cardiovascular applications. Hence, there is a substantial need for signal processing techniques to explore these applications and to improve the reliability of the PPG/iPPG-based parameters. \par A part of the thesis is dedicated to the development of robust processing schemes to estimate heart rate from the PPG/iPPG signals. The proposed approaches were built on adaptive frequency tracking algorithms that were previously developed in our group. These tools, based on adaptive band-pass filters, provide instantaneous frequency estimates of the input signal(s) with a very low time delay, making them suitable for real-time applications. In case of conventional PPG, a prior adaptive noise cancellation step involving the use of accelerometer signals was also necessary to reconstruct clean PPG signals during the regions corrupted by motion artifacts. Regarding iPPG, after comparing different regions of interest on the subject face, we hypothesized that the simultaneous use of different iPPG signal derivation methods (i.e. methods to derive the iPPG time series from the pixel values of the consecutive frames) could be advantageous. Methods to assess signal quality online and to incorporate it into instantaneous frequency estimation were also examined and successfully applied to improve system reliability. \par This thesis also explored different innovative applications involving PPG/iPPG signals. The detection of atrial fibrillation was studied. Novel features derived directly from the PPG waveforms, designed to reflect the morphological changes observed during arrhythmic episodes, were proposed and proven to be successful for atrial fibrillation detection. Arrhythmia detection and robust heart rate estimation approaches were combined in another study aimed at reducing the number of false arrhythmia alarms in the intensive care unit by exploiting signals from independent sources, including PPG. Evaluation on a hidden dataset demonstrated that the number of false alarms was drastically reduced while almost no true alarm was suppressed. Finally, other aspects of the iPPG technology were examined, such as the measurement of pulse rate variability indexes from the iPPG signals and the estimation of respiratory rate from the iPPG interbeat intervals

    Modern Telemetry

    Get PDF
    Telemetry is based on knowledge of various disciplines like Electronics, Measurement, Control and Communication along with their combination. This fact leads to a need of studying and understanding of these principles before the usage of Telemetry on selected problem solving. Spending time is however many times returned in form of obtained data or knowledge which telemetry system can provide. Usage of telemetry can be found in many areas from military through biomedical to real medical applications. Modern way to create a wireless sensors remotely connected to central system with artificial intelligence provide many new, sometimes unusual ways to get a knowledge about remote objects behaviour. This book is intended to present some new up to date accesses to telemetry problems solving by use of new sensors conceptions, new wireless transfer or communication techniques, data collection or processing techniques as well as several real use case scenarios describing model examples. Most of book chapters deals with many real cases of telemetry issues which can be used as a cookbooks for your own telemetry related problems

    Novel Low Complexity Biomedical Signal Processing Techniques for Online Applications

    Get PDF
    Biomedical signal processing has become a very active domain of research nowadays. With the advent of portable monitoring devices, from accelerometer-enabled bracelets and smart-phones to more advanced vital sign tracking body area networks, this field has been receiving unprecedented attention. Indeed, portable health monitoring can help uncover the underlying dynamics of human health in a way that has not been possible before. Several challenges have emerged however, as these devices present key differences in terms of signal acquisition and processing in comparison with conventional methods. Hardware constraints such as processing power and limited battery capacity make most established techniques unsuitable and therefore, the need for low-complexity yet robust signal processing methods has appeared. Another issue that needs to be addressed is the quality of the signals captured by these devices. Unlike in clinical scenarios, in portable health monitoring subjects are constantly performing their daily activities. Moreover, signals maybe captured from unconventional locations and subsequently, be prone to perturbations. In order to obtain reliable measures from these monitoring devices, one needs to acquire dependable signal quality measures, to avoid false alarms. Indeed, hardware limitations and low-quality signals can greatly influence the performance of portable monitoring devices. Nevertheless, most devices offer simultaneous acquisition of multiple physiological parameters, such as electrocardiogram (ECG) and photoplethysmogram (PPG). Through multi-modal signal processing the overall performance can be improved, for instance by deriving parameters such as heart rate estimation from the most reliable and uncontaminated source. This thesis is therefore, dedicated to propose novel low-complexity biomedical processing techniques for real-time/online applications. Throughout this dissertation, several bio-signals such as the ECG, PPG, and electroencephalogram (EEG) are investigated. %There is an emphasis on ECG processing techniques, as most of the bio-signals recorded today reflect information about the heart. The main contribution of this dissertation consists in two signal processing techniques: 1) a novel ECG QRS-complex detection and delineation technique, and 2) a short-term event extraction technique for biomedical signals. The former is based on a processing technique called mathematical morphology (MM), and adaptively uses subject QRS-complex amplitude- and morphological attributes for a robust detection and delineation. This method is generalized to intra-cardiac electrograms for atrial activation detection during atrial fibrillation. The second method, called the Relative-Energy algorithm, uses short- and long-term signal energies to highlight events of interest and discard unwanted activities. Collectively, the results obtained by these methods suggest that while presenting low-computational costs, they can efficiently and robustly extract biomedical events of interest. Using the relative energy algorithm, a continuous non-binary ECG signal quality index is presented. The ECG quality is determined by creating a cleaned-up version of the input ECG and calculating the correlation coefficient between the cleaned-up and the original ECG. The proposed quality index is fast and can be implemented online, making it suitable for portable monitoring scenarios

    Separator fluid volume requirements in multi-infusion settings

    Get PDF
    INTRODUCTION. Intravenous (IV) therapy is a widely used method for the administration of medication in hospitals worldwide. ICU and surgical patients in particular often require multiple IV catheters due to incompatibility of certain drugs and the high complexity of medical therapy. This increases discomfort by painful invasive procedures, the risk of infections and costs of medication and disposable considerably. When different drugs are administered through the same lumen, it is common ICU practice to flush with a neutral fluid between the administration of two incompatible drugs in order to optimally use infusion lumens. An important constraint for delivering multiple incompatible drugs is the volume of separator fluid that is sufficient to safely separate them. OBJECTIVES. In this pilot study we investigated whether the choice of separator fluid, solvent, or administration rate affects the separator volume required in a typical ICU infusion setting. METHODS. A standard ICU IV line (2m, 2ml, 1mm internal diameter) was filled with methylene blue (40 mg/l) solution and flushed using an infusion pump with separator fluid. Independent variables were solvent for methylene blue (NaCl 0.9% vs. glucose 5%), separator fluid (NaCl 0.9% vs. glucose 5%), and administration rate (50, 100, or 200 ml/h). Samples were collected using a fraction collector until <2% of the original drug concentration remained and were analyzed using spectrophotometry. RESULTS. We did not find a significant effect of administration rate on separator fluid volume. However, NaCl/G5% (solvent/separator fluid) required significantly less separator fluid than NaCl/NaCl (3.6 ± 0.1 ml vs. 3.9 ± 0.1 ml, p <0.05). Also, G5%/G5% required significantly less separator fluid than NaCl/NaCl (3.6 ± 0.1 ml vs. 3.9 ± 0.1 ml, p <0.05). The significant decrease in required flushing volume might be due to differences in the viscosity of the solutions. However, mean differences were small and were most likely caused by human interactions with the fluid collection setup. The average required flushing volume is 3.7 ml. CONCLUSIONS. The choice of separator fluid, solvent or administration rate had no impact on the required flushing volume in the experiment. Future research should take IV line length, diameter, volume and also drug solution volumes into account in order to provide a full account of variables affecting the required separator fluid volume
    corecore