6,399 research outputs found

    KALOHA:  ike  i ke ALOHA

    Get PDF
    A new family of channel-access schemes  called KALOHA  (for ``Knowledge in ALOHA") is introduced.  KALOHA consists of modifying the pure ALOHA  protocol  by  endowing nodes with knowledge regarding the local times when packets  and acknowledgments are received,  and sharing  estimates of channel utilization at the medium access control (MAC) layer. The only physical-layer feedback needed   in KALOHA is the reception of  correct data packets and their ACKs. A  simple Markov-chain model is used  to  compare the throughput of KALOHA with ALOHA and slotted ALOHA. The analysis takes into account the amount of knowledge that nodes have and  the  effect of  acknowledgments and turnaround latencies.  The results  demonstrate the  benefits  derived from using  and sharing knowledge of channel utilization at the MAC layer.  KALOHA is more stable  than ALOHA and attains  more than double  the throughput of  ALOHA,  without the need for carrier sensing, requiring time slotting at the physical layer, or using other physical-layer mechanisms

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    A SURVEY OF CONTENTION BASED MEDIUM ACCESS CONTROL (MAC) PROTOCOLS IN WIRELESS LAN

    Get PDF
    In wireless network, all radio nodes are tuned to the same frequency to interconnect and establish communication between each other. All nodes in the network broadcasts their packets over a common medium and in such scenario collisions are considered as instinctive attribute. Therefore, a proper method/regulation known as Medium Access Control (MAC) protocol is required to regulate and manage an efficient access to the common channel. The protocol is designed to allow radio nodes in wireless network to broadcast their packets in an orderly and efficient manner to eliminate the collision among them. It also provides a fair bandwidth sharing to all contending nodes in the network. To date, various MAC protocols was developed to regulate the communication access among all radio nodes in wireless network. This article presents an exhaustive survey of existing contention based MAC protocols, their operations, advantages and disadvantages. Other than that, a typical MAC protocol used in IEEE 802.11 wireless networks standard, such as Carrier Sense Multiple Access (CSMA) and Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) also explained and presented in this article

    A Game Theory based Contention Window Adjustment for IEEE 802.11 under Heavy Load

    Get PDF
    The 802.11 families are considered as the most applicable set of standards for Wireless Local Area Networks (WLANs) where nodes make access to the wireless media using random access techniques. In such networks, each node adjusts its contention window to the minimum size irrespective of the number of competing nodes, so in saturated mode and excessive number of nodes available, the network performance is reduced due to severe collision probability. A cooperative game is being proposed to adjust the users’ contention windows in improving the network throughput, delay and packet drop ratio under heavy traffic load circumstances. The system’s performance evaluated by simulations indicate some superiorities of the proposed method over 802.11-DCF (Distribute Coordinate Function)
    corecore