403,201 research outputs found

    Context Aware POI Recommendation using Bipartite Graph

    Get PDF
    With the swift proliferation of handheld mobile devices, location based social networking (LBSNs) services have gained immense attention allowing users to discover their point of interest (POI). Application of collaborative filtering techniques in POI recommendation becomes challenging due to the sparsity of large user-POI rating matrix. Further, in the context of LBSNs, the spatiotemporal information is pivotal to capture user\u27s real-time preferences. In this work we propose a graph based POI recommendation approach, Context Aware POI with Social Trust (CAST) which integrates the geographical influence of the POIs and the influence of the social connections with the user rankings derived from the weighted bipartite graph. Experiments have been conducted with six state-of-the-art baselines using two real-world LBSN data sets. Findings reveal that user ranking on bipartite graph is a significant contributor to the performance along with social, geographical and spatial influence

    Time-aware metric embedding with asymmetric projection for successive POI recommendation

    Full text link
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Successive Point-of-Interest (POI) recommendation aims to recommend next POIs for a given user based on this user’s current location. Indeed, with the rapid growth of Location-based Social Networks (LBSNs), successive POI recommendation has become an important and challenging task, since it can help to meet users’ dynamic interests based on their recent check-in behaviors. While some efforts have been made for this task, most of them do not capture the following properties: 1) The transition between consecutive POIs in user check-in sequences presents asymmetric property, however existing approaches usually assume the forward and backward transition probabilities between a POI pair are symmetric. 2) Users usually prefer different successive POIs at different time, but most existing studies do not consider this dynamic factor. To this end, in this paper, we propose a time-aware metric embedding approach with asymmetric projection (referred to as MEAP-T) for successive POI recommendation, which takes the above two properties into consideration. In addition, we exploit three latent Euclidean spaces to project the POI-POI, POI-user, and POI-time relationships. Finally, the experimental results on two real-world datasets show MEAP-T outperforms the state-of-the-art methods in terms of both precision and recall

    CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

    Get PDF
    Point-of-Interest (POI) recommendation systems have gained popularity for their unique ability to suggest geographical destinations, with the incorporation of contextual information such as time, location, and user-item interaction. Existing recommendation frameworks lack the contextual fusion required for POI systems. This paper presents CAPRI, a novel POI recommendation framework that effectively integrates context-aware models, such as GeoSoCa, LORE, and USG, and introduces a novel strategy for the efficient merging of contextual information. CAPRI integrates an evaluation module that expands the evaluation scope beyond accuracy to include novelty, personalization, diversity, and fairness. With an aim to establish a new industry standard for reproducible results in the realm of POI recommendation systems, we have made CAPRI openly accessible on GitHub, facilitating easy access and contribution to the continued development and refinement of this innovative framework. 19. Industry, innovation and infrastructur

    Context-Aware Personalized Point-of-Interest Recommendation System

    Get PDF
    The increasing volume of information has created overwhelming challenges to extract the relevant items manually. Fortunately, the online systems, such as e-commerce (e.g., Amazon), location-based social networks (LBSNs) (e.g., Facebook) among many others have the ability to track end users\u27 browsing and consumption experiences. Such explicit experiences (e.g., ratings) and many implicit contexts (e.g., social, spatial, temporal, and categorical) are useful in preference elicitation and recommendation. As an emerging branch of information filtering, the recommendation systems are already popular in many domains, such as movies (e.g., YouTube), music (e.g., Pandora), and Point-of-Interest (POI) (e.g., Yelp). The POI domain has many contextual challenges (e.g., spatial (preferences to a near place), social (e.g., friend\u27s influence), temporal (e.g., popularity at certain time), categorical (similar preferences to places with same category), locality of POI, etc.) that can be crucial for an efficient recommendation. The user reviews shared across different social networks provide granularity in users\u27 consumption experience. From the data mining and machine learning perspective, following three research directions are identified and considered relevant to an efficient context-aware POI recommendation, (1) incorporation of major contexts into a single model and a detailed analysis of the impact of those contexts, (2) exploitation of user activity and location influence to model hierarchical preferences, and (3) exploitation of user reviews to formulate the aspect opinion relation and to generate explanation for recommendation. This dissertation presents different machine learning and data mining-based solutions to address the above-mentioned research problems, including, (1) recommendation models inspired from contextualized ranking and matrix factorization that incorporate the major contexts and help in analysis of their importance, (2) hierarchical and matrix-factorization models that formulate users\u27 activity and POI influences on different localities that model hierarchical preferences and generate individual and sequence recommendations, and (3) graphical models inspired from natural language processing and neural networks to generate recommendations augmented with aspect-based explanations
    • …
    corecore