453 research outputs found

    DESIGN AND OPTIMIZATION OF SIMULTANEOUS WIRELESS INFORMATION AND POWER TRANSFER SYSTEMS

    Get PDF
    The recent trends in the domain of wireless communications indicate severe upcoming challenges, both in terms of infrastructure as well as design of novel techniques. On the other hand, the world population keeps witnessing or hearing about new generations of mobile/wireless technologies within every half to one decade. It is certain the wireless communication systems have enabled the exchange of information without any physical cable(s), however, the dependence of the mobile devices on the power cables still persist. Each passing year unveils several critical challenges related to the increasing capacity and performance needs, power optimization at complex hardware circuitries, mobility of the users, and demand for even better energy efficiency algorithms at the wireless devices. Moreover, an additional issue is raised in the form of continuous battery drainage at these limited-power devices for sufficing their assertive demands. In this regard, optimal performance at any device is heavily constrained by either wired, or an inductive based wireless recharging of the equipment on a continuous basis. This process is very inconvenient and such a problem is foreseen to persist in future, irrespective of the wireless communication method used. Recently, a promising idea for simultaneous wireless radio-frequency (RF) transmission of information and energy came into spotlight during the last decade. This technique does not only guarantee a more flexible recharging alternative, but also ensures its co-existence with any of the existing (RF-based) or alternatively proposed methods of wireless communications, such as visible light communications (VLC) (e.g., Light Fidelity (Li-Fi)), optical communications (e.g., LASER-equipped communication systems), and far-envisioned quantum-based communication systems. In addition, this scheme is expected to cater to the needs of many current and future technologies like wearable devices, sensors used in hazardous areas, 5G and beyond, etc. This Thesis presents a detailed investigation of several interesting scenarios in this direction, specifically concerning design and optimization of such RF-based power transfer systems. The first chapter of this Thesis provides a detailed overview of the considered topic, which serves as the foundation step. The details include the highlights about its main contributions, discussion about the adopted mathematical (optimization) tools, and further refined minutiae about its organization. Following this, a detailed survey on the wireless power transmission (WPT) techniques is provided, which includes the discussion about historical developments of WPT comprising its present forms, consideration of WPT with wireless communications, and its compatibility with the existing techniques. Moreover, a review on various types of RF energy harvesting (EH) modules is incorporated, along with a brief and general overview on the system modeling, the modeling assumptions, and recent industrial considerations. Furthermore, this Thesis work has been divided into three main research topics, as follows. Firstly, the notion of simultaneous wireless information and power transmission (SWIPT) is investigated in conjunction with the cooperative systems framework consisting of single source, multiple relays and multiple users. In this context, several interesting aspects like relay selection, multi-carrier, and resource allocation are considered, along with problem formulations dealing with either maximization of throughput, maximization of harvested energy, or both. Secondly, this Thesis builds up on the idea of transmit precoder design for wireless multigroup multicasting systems in conjunction with SWIPT. Herein, the advantages of adopting separate multicasting and energy precoder designs are illustrated, where we investigate the benefits of multiple antenna transmitters by exploiting the similarities between broadcasting information and wirelessly transferring power. The proposed design does not only facilitates the SWIPT mechanism, but may also serve as a potential candidate to complement the separate waveform designing mechanism with exclusive RF signals meant for information and power transmissions, respectively. Lastly, a novel mechanism is developed to establish a relationship between the SWIPT and cache-enabled cooperative systems. In this direction, benefits of adopting the SWIPT-caching framework are illustrated, with special emphasis on an enhanced rate-energy (R-E) trade-off in contrast to the traditional SWIPT systems. The common notion in the context of SWIPT revolves around the transmission of information, and storage of power. In this vein, the proposed work investigates the system wherein both information and power can be transmitted and stored. The Thesis finally concludes with insights on the future directions and open research challenges associated with the considered framework

    Resource Allocation Algorithm for OFDMA System based on Bidirectional Multi-Relay

    Get PDF
    A novel approach to optimize power allocation and subcarrier pairing in a high signal-to-noise ratio (SNR) scenario within a two-way multi-relay orthogonal frequency division multiple access (OFDMA) system has been introduced. Unlike conventional methods where relays operate on individual subcarriers, our scheme allows all relays to transmit signals across each subcarrier pair, thereby leveraging significant space diversity. Operating under a constraint of total system power, our proposed scheme initially assigns power to each relay using Cauchy inequality under the assumption of fixed total relay power. Subsequently, employing a dichotomous approach, we determine the power allocation between the source node and the relay node by maximizing the equivalent channel gain across various subcarrier pairs. Finally, we employ convex programming to allocate power to different subcarrier pairs, while utilizing the Hungarian algorithm to pair subcarriers effectively, thereby maximizing system capacity. Given the inherent complexity of power allocation algorithms in two-way multi-relay networks, conventional methods lack optimal solutions with low complexity. However, our algorithm significantly mitigates the complexity associated with power allocation, particularly within a system comprising 40 subcarriers. Simulation results underscore the superiority of our proposed scheme over conventional relay selection approaches, particularly those wherein relays operate on individual subcarriers

    Application of Smart Antenna Technologies in Simultaneous Wireless Information and Power Transfer

    Full text link
    Simultaneous wireless information and power transfer (SWIPT) is a promising solution to increase the lifetime of wireless nodes and hence alleviate the energy bottleneck of energy constrained wireless networks. As an alternative to conventional energy harvesting techniques, SWIPT relies on the use of radio frequency signals, and is expected to bring some fundamental changes to the design of wireless communication networks. This article focuses on the application of advanced smart antenna technologies, including multiple-input multiple-output and relaying techniques, to SWIPT. These smart antenna technologies have the potential to significantly improve the energy efficiency and also the spectral efficiency of SWIPT. Different network topologies with single and multiple users are investigated, along with some promising solutions to achieve a favorable trade-off between system performance and complexity. A detailed discussion of future research challenges for the design of SWIPT systems is also provided

    Energy efficient planning and operation models for wireless cellular networks

    Get PDF
    Prospective demands of next-generation wireless networks are ambitious and will require cellular networks to support 1000 times higher data rates and 10 times lower round-trip latency. While this data deluge is a natural outcome of the increasing number of mobile devices with data hungry applications and the internet of things (IoT), the low latency demand is required by the future interactive applications such as tactile internet , virtual and enhanced reality, and online internet gaming, etc. The motivation behind this thesis is to meet the increasing quality of service (QoS) demands in wireless communications and reduce the global carbon footprint at the same time. To achieve these goals, energy efficient planning and operations models for wireless cellular networks are proposed and analyzed. Firstly, a solution based on the overlay cognitive radio (CR) along with cooperative relaying is proposed to reduce the effect of the scarcity problem of the radio spectrum. In overlay technique, the primary users (PUs) cooperate with cognitive users (CUs) for mutual benefits. The achievable cognitive rate of two-way relaying (TWR) system assisted by multiple antennas is proposed. Compared to traditional relaying where the transmission to exchange two different messages between two sources takes place in four time slots, using TWR, the required number of transmission slots reduces to two slots. In the first slot, both sources transmit their signals simultaneously to the relay. Then, during the second slot the relay broadcasts its signal to the sources. Using an overlay CR technique, the CUs are allowed to allocate part of the PUs\u27 spectrum to perform their cognitive transmission. In return, acting as amplify-and-forward (AF) TWR, the CUs are exploited to support PUs to reach their target data rates over the remaining bandwidth. A meta-heuristic approach based on particle swarm optimization algorithm is proposed to find a near optimal resource allocation in addition to the relay amplification matrix gains. Then, we investigate a multiple relay selection scheme for energy harvesting (EH)-based on TWR system. All the relays are considered as EH nodes that harvest energy from renewable and radio frequency sources, where the relays forward the information to the sources. The power-splitting protocol, in which the receiver splits the input radio frequency signal into two components: one for information transmission and the other for energy harvesting, is adopted at the relay side. An approximate optimization framework based on geometric programming is established in a convex form to find near optimal PS ratios, the relays’ transmission power, and the selected relays in order to maximize the total rate utility over multiple time slots. Different utility metrics are considered and analyzed depending on the level of fairness. Secondly, a downlink resource and energy management approach for heterogeneous networks (HetNets) is proposed, where all base stations (BSs) are equipped to harvest energy from renewable energy (RE) sources. A hybrid power supply of green (renewable) and traditional micro-grid, such that the traditional micro-grid is not exploited as long as the BSs can meet their power demands from harvested and stored green energy. Furthermore, a dynamic BS switching ON/OFF combined with the EH model, where some BSs are turned off due to the low traffic periods and their stored energy in order to harvest more energy and help efficiently during the high traffic periods. A binary linear programming (BLP) optimization problem is formulated and solved optimally to minimize the network-wide energy consumption subject to users\u27 certain quality of service and BSs\u27 power consumption constraints. Moreover, green communication algorithms are implemented to solve the problem with low complexity time. Lastly, an energy management framework for cellular HetNets supported by dynamic drone small cells is proposed. A three-tier HetNet composed of a macrocell BS, micro cell BSs (MBSs), and solar powered drone small cell BSs are deployed to serve the networks\u27 subscribers. In addition to the RE, the drones can power their batteries via a charging station located at the macrocell BS site. Pre-planned locations are identified by the mobile operator for possible drones\u27 placement. The objective of this framework is to jointly determine the optimal locations of the drones in addition to the MBSs that can be safely turned off in order to minimize the daily energy consumption of the network. The framework takes also into account the cells\u27 capacities and the QoS level defined by the minimum required receiving power. A BLP problem is formulated to optimally determine the network status during a time-slotted horizon

    Pricing Perspective for SWIPT in OFDM-based Multi-User Wireless Cooperative Systems

    Get PDF
    We propose a novel formulation for joint maximization of total weighted sum-spectral efficiency and weighted sum-harvested energy to study Simultaneous Wireless Information and Power Transfer (SWIPT) from a pricing perspective. Specifically, we consider that a transmit source communicates with multiple destinations using Orthogonal Frequency Division Multiplexing (OFDM) system within a dual-hop relay-assisted network, where the destination nodes are capable of jointly decoding information and harvesting energy from the same radio-frequency (RF) signal using either the time-switching (TS) or power-splitting (PS) based SWIPT receiver architectures. Computation of the optimal solution for the aforementioned problem is an extremely challenging task as joint optimization of several network resources introduce intractability at high numeric values of relays, destination nodes and OFDM sub-carriers. Therefore, we present a suitable algorithm with sub-optimal results and good performance to compute the performance of joint data processing and harvesting energy under fixed pricing methods by adjusting the respective weight factors, motivated by practical statistics. Furthermore, by exploiting the binary options of the weights, we show that the proposed formulation can be regulated purely as a sum-spectral efficiency maximization or solely as a sum-harvested energy maximization problem. Numerical results illustrate the benefits of the proposed design under several operating conditions and parameter values

    Relaying in the Internet of Things (IoT): A Survey

    Get PDF
    The deployment of relays between Internet of Things (IoT) end devices and gateways can improve link quality. In cellular-based IoT, relays have the potential to reduce base station overload. The energy expended in single-hop long-range communication can be reduced if relays listen to transmissions of end devices and forward these observations to gateways. However, incorporating relays into IoT networks faces some challenges. IoT end devices are designed primarily for uplink communication of small-sized observations toward the network; hence, opportunistically using end devices as relays needs a redesign of both the medium access control (MAC) layer protocol of such end devices and possible addition of new communication interfaces. Additionally, the wake-up time of IoT end devices needs to be synchronized with that of the relays. For cellular-based IoT, the possibility of using infrastructure relays exists, and noncellular IoT networks can leverage the presence of mobile devices for relaying, for example, in remote healthcare. However, the latter presents problems of incentivizing relay participation and managing the mobility of relays. Furthermore, although relays can increase the lifetime of IoT networks, deploying relays implies the need for additional batteries to power them. This can erode the energy efficiency gain that relays offer. Therefore, designing relay-assisted IoT networks that provide acceptable trade-offs is key, and this goes beyond adding an extra transmit RF chain to a relay-enabled IoT end device. There has been increasing research interest in IoT relaying, as demonstrated in the available literature. Works that consider these issues are surveyed in this paper to provide insight into the state of the art, provide design insights for network designers and motivate future research directions
    • …
    corecore