57,949 research outputs found

    Time-sensitive opinion mining for prediction

    Get PDF
    Users commonly use Web 2.0 platforms to post their opinions and their predictions about future events (e.g., the movement of astock). Therefore, opinion mining can be used as a tool for predicting future events. Previous work on opinion mining extracts from the text only the polarity of opinions as sentiment indicators. We observe that a typical opinion post also contains temporal references which can improve prediction. This short paper presents our preliminary work on extracting reference time tagsand integrating them into an opinion mining model, in order to improvethe accuracy of future event prediction. We conduct anexperimental evaluation using a collection of microblogs posted by investors to demonstrate the effectiveness of our approach.postprin

    Automatic domain ontology extraction for context-sensitive opinion mining

    Get PDF
    Automated analysis of the sentiments presented in online consumer feedbacks can facilitate both organizations’ business strategy development and individual consumers’ comparison shopping. Nevertheless, existing opinion mining methods either adopt a context-free sentiment classification approach or rely on a large number of manually annotated training examples to perform context sensitive sentiment classification. Guided by the design science research methodology, we illustrate the design, development, and evaluation of a novel fuzzy domain ontology based contextsensitive opinion mining system. Our novel ontology extraction mechanism underpinned by a variant of Kullback-Leibler divergence can automatically acquire contextual sentiment knowledge across various product domains to improve the sentiment analysis processes. Evaluated based on a benchmark dataset and real consumer reviews collected from Amazon.com, our system shows remarkable performance improvement over the context-free baseline

    Predicting the Effects of News Sentiments on the Stock Market

    Full text link
    Stock market forecasting is very important in the planning of business activities. Stock price prediction has attracted many researchers in multiple disciplines including computer science, statistics, economics, finance, and operations research. Recent studies have shown that the vast amount of online information in the public domain such as Wikipedia usage pattern, news stories from the mainstream media, and social media discussions can have an observable effect on investors opinions towards financial markets. The reliability of the computational models on stock market prediction is important as it is very sensitive to the economy and can directly lead to financial loss. In this paper, we retrieved, extracted, and analyzed the effects of news sentiments on the stock market. Our main contributions include the development of a sentiment analysis dictionary for the financial sector, the development of a dictionary-based sentiment analysis model, and the evaluation of the model for gauging the effects of news sentiments on stocks for the pharmaceutical market. Using only news sentiments, we achieved a directional accuracy of 70.59% in predicting the trends in short-term stock price movement.Comment: 4 page

    Mining the Demographics of Political Sentiment from Twitter Using Learning from Label Proportions

    Full text link
    Opinion mining and demographic attribute inference have many applications in social science. In this paper, we propose models to infer daily joint probabilities of multiple latent attributes from Twitter data, such as political sentiment and demographic attributes. Since it is costly and time-consuming to annotate data for traditional supervised classification, we instead propose scalable Learning from Label Proportions (LLP) models for demographic and opinion inference using U.S. Census, national and state political polls, and Cook partisan voting index as population level data. In LLP classification settings, the training data is divided into a set of unlabeled bags, where only the label distribution in of each bag is known, removing the requirement of instance-level annotations. Our proposed LLP model, Weighted Label Regularization (WLR), provides a scalable generalization of prior work on label regularization to support weights for samples inside bags, which is applicable in this setting where bags are arranged hierarchically (e.g., county-level bags are nested inside of state-level bags). We apply our model to Twitter data collected in the year leading up to the 2016 U.S. presidential election, producing estimates of the relationships among political sentiment and demographics over time and place. We find that our approach closely tracks traditional polling data stratified by demographic category, resulting in error reductions of 28-44% over baseline approaches. We also provide descriptive evaluations showing how the model may be used to estimate interactions among many variables and to identify linguistic temporal variation, capabilities which are typically not feasible using traditional polling methods

    Research Directions, Challenges and Issues in Opinion Mining

    Get PDF
    Rapid growth of Internet and availability of user reviews on the web for any product has provided a need for an effective system to analyze the web reviews. Such reviews are useful to some extent, promising both the customers and product manufacturers. For any popular product, the number of reviews can be in hundreds or even thousands. This creates difficulty for a customer to analyze them and make important decisions on whether to purchase the product or to not. Mining such product reviews or opinions is termed as opinion mining which is broadly classified into two main categories namely facts and opinions. Though there are several approaches for opinion mining, there remains a challenge to decide on the recommendation provided by the system. In this paper, we analyze the basics of opinion mining, challenges, pros & cons of past opinion mining systems and provide some directions for the future research work, focusing on the challenges and issues

    From Social Data Mining to Forecasting Socio-Economic Crisis

    Full text link
    Socio-economic data mining has a great potential in terms of gaining a better understanding of problems that our economy and society are facing, such as financial instability, shortages of resources, or conflicts. Without large-scale data mining, progress in these areas seems hard or impossible. Therefore, a suitable, distributed data mining infrastructure and research centers should be built in Europe. It also appears appropriate to build a network of Crisis Observatories. They can be imagined as laboratories devoted to the gathering and processing of enormous volumes of data on both natural systems such as the Earth and its ecosystem, as well as on human techno-socio-economic systems, so as to gain early warnings of impending events. Reality mining provides the chance to adapt more quickly and more accurately to changing situations. Further opportunities arise by individually customized services, which however should be provided in a privacy-respecting way. This requires the development of novel ICT (such as a self- organizing Web), but most likely new legal regulations and suitable institutions as well. As long as such regulations are lacking on a world-wide scale, it is in the public interest that scientists explore what can be done with the huge data available. Big data do have the potential to change or even threaten democratic societies. The same applies to sudden and large-scale failures of ICT systems. Therefore, dealing with data must be done with a large degree of responsibility and care. Self-interests of individuals, companies or institutions have limits, where the public interest is affected, and public interest is not a sufficient justification to violate human rights of individuals. Privacy is a high good, as confidentiality is, and damaging it would have serious side effects for society.Comment: 65 pages, 1 figure, Visioneer White Paper, see http://www.visioneer.ethz.c
    • …
    corecore