5 research outputs found

    Model reduction for stochastic CaMKII reaction kinetics in synapses by graph-constrained correlation dynamics.

    Get PDF
    A stochastic reaction network model of Ca(2+) dynamics in synapses (Pepke et al PLoS Comput. Biol. 6 e1000675) is expressed and simulated using rule-based reaction modeling notation in dynamical grammars and in MCell. The model tracks the response of calmodulin and CaMKII to calcium influx in synapses. Data from numerically intensive simulations is used to train a reduced model that, out of sample, correctly predicts the evolution of interaction parameters characterizing the instantaneous probability distribution over molecular states in the much larger fine-scale models. The novel model reduction method, 'graph-constrained correlation dynamics', requires a graph of plausible state variables and interactions as input. It parametrically optimizes a set of constant coefficients appearing in differential equations governing the time-varying interaction parameters that determine all correlations between variables in the reduced model at any time slice

    Using cellzilla for plant growth simulations at the cellular level

    Get PDF
    Cellzilla is a two-dimensional tissue simulation platform for plant modeling utilizing Cellerator arrows. Cellerator describes biochemical interactions with a simplified arrow-based notation; all interactions are input as reactions and are automatically translated to the appropriate differential equations using a computer algebra system. Cells are represented by a polygonal mesh of well-mixed compartments. Cell constituents can interact intercellularly via Cellerator reactions utilizing diffusion, transport, and action at a distance, as well as amongst themselves within a cell. The mesh data structure consists of vertices, edges (vertex pairs), and cells (and optional intercellular wall compartments) as ordered collections of edges. Simulations may be either static, in which cell constituents change with time but cell size and shape remain fixed; or dynamic, where cells can also grow. Growth is controlled by Hookean springs associated with each mesh edge and an outward pointing pressure force. Spring rest length grows at a rate proportional to the extension beyond equilibrium. Cell division occurs when a specified constituent (or cell mass) passes a (random, normally distributed) threshold. The orientation of new cell walls is determined either by Errera's rule, or by a potential model that weighs contributions due to equalizing daughter areas, minimizing wall length, alignment perpendicular to cell extension, and alignment perpendicular to actual growth direction

    Prospects for Declarative Mathematical Modeling of Complex Biological Systems

    Full text link
    Declarative modeling uses symbolic expressions to represent models. With such expressions one can formalize high-level mathematical computations on models that would be difficult or impossible to perform directly on a lower-level simulation program, in a general-purpose programming language. Examples of such computations on models include model analysis, relatively general-purpose model-reduction maps, and the initial phases of model implementation, all of which should preserve or approximate the mathematical semantics of a complex biological model. The potential advantages are particularly relevant in the case of developmental modeling, wherein complex spatial structures exhibit dynamics at molecular, cellular, and organogenic levels to relate genotype to multicellular phenotype. Multiscale modeling can benefit from both the expressive power of declarative modeling languages and the application of model reduction methods to link models across scale. Based on previous work, here we define declarative modeling of complex biological systems by defining the operator algebra semantics of an increasingly powerful series of declarative modeling languages including reaction-like dynamics of parameterized and extended objects; we define semantics-preserving implementation and semantics-approximating model reduction transformations; and we outline a "meta-hierarchy" for organizing declarative models and the mathematical methods that can fruitfully manipulate them
    corecore