268,500 research outputs found

    Time as It Could Be Measured in Artificial Living Systems

    Get PDF
    Being able to measure time, whether directly or indirectly, is a significant advantage for an organism. It permits it to predict regular events, and prepare for them on time. Thus, clocks are ubiquitous in biology. In the present paper, we consider the most minimal abstract pure clocks and investigate their characteristics with respect to their ability to measure time. Amongst other, we find fundamentally diametral clock characteristics, such as oscillatory behaviour for local time measurement or decay-based clocks measuring time periods in scales global to the problem. We include also cascades of independent clocks (“clock bags”) and composite clocks with controlled dependency; the latter show various regimes of markedly different dynamics.Final Published versio

    Natural Variation and Neuromechanical Systems

    Get PDF
    Natural variation plays an important but subtle and often ignored role in neuromechanical systems. This is especially important when designing for living or hybrid systems \ud which involve a biological or self-assembling component. Accounting for natural variation can be accomplished by taking a population phenomics approach to modeling and analyzing such systems. I will advocate the position that noise in neuromechanical systems is partially represented by natural variation inherent in user physiology. Furthermore, this noise can be augmentative in systems that couple physiological systems with technology. There are several tools and approaches that can be borrowed from computational biology to characterize the populations of users as they interact with the technology. In addition to transplanted approaches, the potential of natural variation can be understood as having a range of effects on both the individual's physiology and function of the living/hybrid system over time. Finally, accounting for natural variation can be put to good use in human-machine system design, as three prescriptions for exploiting variation in design are proposed

    Quantum Artificial Life in an IBM Quantum Computer

    Full text link
    We present the first experimental realization of a quantum artificial life algorithm in a quantum computer. The quantum biomimetic protocol encodes tailored quantum behaviors belonging to living systems, namely, self-replication, mutation, interaction between individuals, and death, into the cloud quantum computer IBM ibmqx4. In this experiment, entanglement spreads throughout generations of individuals, where genuine quantum information features are inherited through genealogical networks. As a pioneering proof-of-principle, experimental data fits the ideal model with accuracy. Thereafter, these and other models of quantum artificial life, for which no classical device may predict its quantum supremacy evolution, can be further explored in novel generations of quantum computers. Quantum biomimetics, quantum machine learning, and quantum artificial intelligence will move forward hand in hand through more elaborate levels of quantum complexity

    G-Complexity, Quantum Computation and Anticipatory Processes

    Get PDF

    Philosophical foundations of the Death and Anti-Death discussion

    Get PDF
    Perhaps there has been no greater opportunity than in this “VOLUME FIFTEEN of our Death And Anti-Death set of anthologies” to write about how might think about life and how to avoid death. There are two reasons to discuss “life”, the first being enhancing our understanding of who we are and why we may be here in the Universe. The second is more practical: how humans meet the physical challenges brought about by the way they have interacted with their environment. Many persons discussing “life” beg the question about what “life” is. Surely, when one discusses how to overcome its opposite, death, they are not referring to another “living” thing such as a plant. There seems to be a commonality, though, and it is this commonality is one needing elaboration. It ostensibly seems to be the boundary condition separating what is completely passive (inert) from what attempts to maintain its integrity, as well as fulfilling other conditions we think “life” has. In our present discussion, there will be a reminder that it by no means has been unequivocally established what life really is by placing quotes around the word, namely, “life”. Consider it a tag representing a bundle of philosophical ideas that will be unpacked in this paper

    Evolution of swarming behavior is shaped by how predators attack

    Full text link
    Animal grouping behaviors have been widely studied due to their implications for understanding social intelligence, collective cognition, and potential applications in engineering, artificial intelligence, and robotics. An important biological aspect of these studies is discerning which selection pressures favor the evolution of grouping behavior. In the past decade, researchers have begun using evolutionary computation to study the evolutionary effects of these selection pressures in predator-prey models. The selfish herd hypothesis states that concentrated groups arise because prey selfishly attempt to place their conspecifics between themselves and the predator, thus causing an endless cycle of movement toward the center of the group. Using an evolutionary model of a predator-prey system, we show that how predators attack is critical to the evolution of the selfish herd. Following this discovery, we show that density-dependent predation provides an abstraction of Hamilton's original formulation of ``domains of danger.'' Finally, we verify that density-dependent predation provides a sufficient selective advantage for prey to evolve the selfish herd in response to predation by coevolving predators. Thus, our work corroborates Hamilton's selfish herd hypothesis in a digital evolutionary model, refines the assumptions of the selfish herd hypothesis, and generalizes the domain of danger concept to density-dependent predation.Comment: 25 pages, 11 figures, 5 tables, including 2 Supplementary Figures. Version to appear in "Artificial Life
    corecore