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Abstract

Being able to measure time, whether directly or indirectly,
is a significant advantage for an organism. It permits it to
predict regular events, and prepare for them on time. Thus,
clocks are ubiquitous in biology. In the present paper, we
consider the most minimal abstract pure clocks and investigate
their characteristics with respect to their ability to measure
time. Amongst other, we find fundamentally diametral clock
characteristics, such as oscillatory behaviour for local time
measurement or decay-based clocks measuring time periods
in scales global to the problem. We include also cascades
of independent clocks (“clock bags”) and composite clocks
with controlled dependency; the latter show various regimes
of markedly different dynamics.

Introduction
“Bacteria count on probabilistic fingers”, to put it crisply, and
count they must when they measure time. In the present
paper, we study how such counting/time measurement could
possibly look like in the most minimal cases which we be-
lieve relevant to simple organisms. Klyubin et al. (2007)
look at maximising information flow for a navigation task.
They find that it is possible to obtain information about the
current time. While there time measurement was a side ef-
fect, here we make it our primary objective: measure time as
the most intrinsic, least environmentally affected processual
quantity, with only three assumptions: it is discrete, the tick
is global (accessible to the agent) and time has a well-defined
beginning. More precisely, we are interested in how much
a Markovian agent with limited memory can keep track of
the flow of time under these assumptions. It turns out that,
in this context, measuring time is effectively counting. To
make the best out of limited resources, we need to count
probabilistically.

In its conceptually simplest incarnation, the measurement
of time would consist essentially of two components: Having
a reliable generator of periodic behaviour on the one hand;
and being able to count the periods, on the other. To measure
larger time intervals precisely, one needs full-fledged coun-
ters, which, in turn, require a comparatively complex logical
make-up; something which, while not impossible in princi-
ple, one would not expect generically in biologically relevant

scenarios and most certainly not in very simple organisms.
Rather, one would typically expect to find some less precise,
but simpler and more robust solution. The present paper in-
vestigates how the most minimal of such models could look
and which characteristic properties we expect them to exhibit.
In our discussion we include both explicit clocks character-
ized by a distinct apparatus with a clear function such as the
suprachiasmatic nucleus in the mammalian hypothalamus in-
volved in the control of circadian rhythms (Klein and Moore,
1991), but also implicit clocks (which exhibit some aspects of
clock-like behaviour without a dedicated mechanism) like the
feeding-hunger cycle of an animal. We do not differentiate
these classes a priori since our formalism does not discrimi-
nate between them, but our study will concentrate on systems
which, given their constraints, are maximally able to measure
time, not considering any other tasks — thus we study clocks
as “pure” as they can be under the circumstances given. We
expressly are not studying how an agent could infer time from
correlations in the environment (using a sundial for example),
but only in how time can be tracked intrinsically. In the same
vein as considering Artificial Life as about understanding
life-as-we-know-it vs. life-as-it-could-be (Langton, 1989),
and in view of how life pervasively makes use of clocks, the
present paper studies possible clocks themselves, or, as we
say in the title: “time-as-it-could-be-measured”.

Temporal Dynamics: The Algebra of Time
We begin with some general comments on the structure of
time. Whether in classical or relativistic physics, or in more
general models (e.g., ancient Indian notions of cyclical time,
or in modern automata networks), there is a commonality
to notions and models of time: From the perspective of a
single organism or agent, events in time satisfy a grammatical
constraint (Rhodes, 2009): If α, β and γ are each sequences
of events, then: if β follows γ in an agent’s experience, and,
prior to both, α occurs, that is exactly equivalent to when β
follows α, and γ occurs after both, i.e. α(βγ) = (αβ)γ.

In short, sequences of events in time from the perspective
of an individual agent satisfy the associative law. Thus,
the study of (possibly general) structures satisfying this law
becomes the study of models of time. This viewpoint has
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deep connections with the theory of discrete or continuous
dynamical systems (Rhodes, 2009). In the finite discrete
deterministic case it leads to the Krohn-Rhodes theory, a
branch of mathematics (algebraic automata theory) where
discrete dynamical systems can be decomposed using (non-
unique) iterative coarse-graining into a cascade of irreducible
components. The composite clocks discussed later constitute
a special case of such a decomposition.

The simplest models of time have a single discrete kind
of event, a clock tick, which drives their dynamics deter-
ministically. The dynamics can be classified into four types
(Nehaniv, 1993): cycles (after a number n of steps every-
thing repeats), fuses (after a number of steps k nothing ever
changes again), fuses that end in cycles (fuses that after k
transient clock ticks end in a cycle, generalizing the former
two cases), or infinite systems with time indexed by the natu-
ral numbers (where each moment is different from the others).
These types correspond to four different kinds of algebraic
structures called semigroups with a single generating event.
If more than one type of event is allowed (e.g., clock ticks of
different types, or sensory input with more than 1-bit), or if
the state transitions are not deterministic, much more com-
plicated and interesting dynamics can arise. Here we seek to
understand the structure of single tick time “as it could be”
for agents experiencing it in a probabilistic or noisy setting,
using the language of information theory for selected basic
cases. Thus the rest of the paper expands beyond determinis-
tic models into probabilistic ones.

The Cost of Measuring Time
Recent work by Barato and Seifert (2016) highlighted interest
in the problem of time measurement by asking if clocks must
pay a thermodynamic cost to run. Their stance is grounded
in fundamental trade-offs of physics. Our perspective at the
level of organisms is far remote from these trade-offs, and
physical intuitions and conservation laws and constraints do
not apply in a straightforward manner. Instead, we work
in a near-macroscopic, classical (non-quantum) Markovian
universe without presuming the additional structure of mi-
crophysics (microreversibility or Hamiltonian dynamics). In
particular, we cannot assume an obvious generalization of
the physical concept of energy to a fully general Markovian
system. Thus, it is not obvious how to cost computation in
terms completely analogous to thermodynamics; the only
concepts that carry over are of entropic/information-theoretic
nature. Shannon information has been shown to be a highly
generalizable measure of information processing cost (Polani,
2009); a universal measure that can even be used to compare
systems of a different nature, it does not presuppose any struc-
ture on the state space of events. All costs will, therefore, be
expressed in this language, specifically information storage
and communication costs.

Small State Spaces. We begin by focusing on minimal
clocks, for a number of reasons. For one, this will make it

easier to explore the full solution space. The second reason is
significantly more subtle, and we will only be able to sketch
it here: essentially, it is not clear what measure of complexity
to utilize for the cost of running a larger single-component
counter and/or the complexity of running the transition itself;
natural candidates for such costs might be predictive infor-
mation (Bialek et al., 2001) or statistical complexity (Crutch-
field and Young, 1989). However, the possible candidates
are not limited to these two measures, and many other plausi-
ble information-theoretic alternatives can be conceived1. In
absence of a canonical measure for the complexity of a single-
component clock, here we limit ourselves to investigate the
most minimal clocks possible, namely a 2-state (1-bit) clock
and we will here not further concern ourselves to take into
account the informational cost of actually running this clock.

Information flow between modules. We said above that
we prefer minimal clocks by default, to avoid dealing with
the complexity of the clock operation. But what if an agent
needs a larger clock? In this case, we build it out of smaller
clocks. Such a compound clock will perform better if its
components “cooperate”. For them to be able to cooperate,
they must be able to exchange information. Therefore limi-
tations in this clock’s internal information flow will reduce
the performance of the clock. Yet this information flow will
in general be costly (Laughlin, 2001). This will limit how
many components can communicate with each other and
at which bandwidth. All in all, in our studies, when look-
ing for candidates for clocks, we prefer Markov chains with
a small number of states and when we move on to larger
clocks we prefer to build them out of small clocks and use
the information flow between the components as cost.

Other Relevant Work
Klyubin et al. (2007) consider the maximization of informa-
tion flows in a very simple agent/environment system. The
resulting agent controllers generate a rich set of behaviours.
One of the side effects of the controllers’ dynamics is that
their internal states partially encode location information, but
also partially time information. In other words, the result-
ing agent controllers provide partial information about the
point in time in the experiment. Amongst other, the paper
studied how space and time are encoded together and how
and to which extent they can be separated (“factorized”) in
informational terms.

Note that in (Klyubin et al., 2007), the measurement of
time was a side effect of the overall information flow op-
timization. The importance of measuring specifically time
(as opposed to having this measurement emerge on the side)
appears in other scenarios, for instance in 13- or 17-year
cicadas (Karban et al., 2000; Sota et al., 2013). On the level
of physical limits, Chen and Luo (2010) study the statements
that can be obtained by applying Fisher information to the

1We will investigate this question in a separate paper.
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problem of measuring time with quantum clocks and discuss
the problem of clock synchronization in the quantum realm.

Karmarkar and Buonomano (2007) note mounting evi-
dence against the view that the brain keeps track of time by
counting ticks and instead study the behaviour of simulated
SDNs (state-dependent neural networks), showing how neu-
ral networks can keep track of time implicitly in their states
without counting. Van Wassenhove (2012) discusses not only
the possible mechanisms of time perception in the brain but
also the difficulty of validating them.

Since we hypothesize that our abstract considerations find
functional correspondences in nature, the simplest examples
would be expected to be found in microorganisms. We would
predict that, if our general hypothesis is correct, the charac-
teristics of our results for minimal clocks will be reflected
in very simple organisms. We will preempt here one result
detailed in the results section. Under constraints on the mem-
ory available to the clock, only two types of clocks are found
— local, short-term clocks measuring the time within a cycle
(essentially its phase); and, long-term clocks which distin-
guish large-scale phases within the overall time interval of
interest. Thus, we get a dichotomy between local time mea-
surement and global time measurement. We will call the first
type cyclic clocks or oscillators, and the second type “drop
clocks” (essentially one-off decay-type time measurements).
Bacteria show examples of both cyclic and drop clocks.

Hut and Beersma (2011) discuss the reasons why day and
night require different behaviours, these forming the selective
pressures of evolution for the circadian rhythm of bacteria
— the periodic cycle of activity in organisms allows them to
adapt to the time of day. This is one example demonstrating
the importance of time-keeping to organisms. They note that
the circadian rhythm of cyanobacteria has been reproduced
and studied in a test tube. Therefore this is an example
of a relatively simple, clearly understood explicit cyclic or
alternator (see below) clock.

Nutsch et al. (2003) study prokaryotic taxis for halobac-
teria, more specifically signal transduction pathway starting
from sensing light and responsible for controlling the switch-
ing of the flagellum. This pathway implements a one-off
drop clock2. They note that while the molecules involved
in this pathway are well studied, the way these components
behave together dynamically is not well understood and only
speculated on. Building upon an earlier model by Marwan
and Oesterhelt (1987), they suggest dynamical models to fit
experimental findings. These models are synthetic and not
based on first principles. Thus, the question about the ac-
tual structure and size of the fundamental clocks of bacteria
remains currently unanswered.

Measuring time can also help bacteria in spatial tasks.
Some bacteria use differences along the length of their body

2Which is reset only by an external trigger; some mechanisms
can be considered drop clocks triggered at conception and never
reset until death, such as telomeres.

to measure gradients (Oliveira et al., 2016), however, others
instead measure time differences between intensities while
moving (Nutsch et al., 2003). This is demonstrating how
measurement of space can be converted into measurement of
time.

Models of Clocks
[. . .] time is always encoded in physical systems; [. . .] any
evolving system with nontrivial dynamics can be regarded as
a clock. To read the time, we must perform measurements
[. . .]. How precisely we can estimate [time] characterizes
the quality of a clock. — Chen and Luo (2010)

Because our clocks are Markov chains, their memory is
explicitly encoded in their current state and they are proba-
bilistic. We consider only discrete state space and also ad-
vance in time only in discrete steps; importantly, this means
that they receive time ticks for free and that they need not be
concerned with the challenge of getting accurate ticks (see
also discussion). Apart from these global ticks, the clocks do
not receive any information from the environment. We fur-
thermore consider first only the most minimal clock designs.
We will later consider more complex (composite) clocks.

First, introduce some notation. Random variables are writ-
ten as capital, their values as lowercase letters. The probabil-
ity of a random variable X to adopt value x will be written
as P (X = x) or, where not ambiguous, as p(x) by abuse
of notation. The state of a clock will be denoted by random
variables S (possibly subscripted by time t, because the prob-
ability distribution over the states of the clock changes in
time) which can take on values u and d (“up” and “down”).
To model the uncertainty that the agent has about the cur-
rent time, we treat true time (which the clocks attempt to
measure), similarly to Klyubin et al. (2007) also as random
variable T which a priori assumes all possible (integer) time
values between t = 0 and t = Tmax with equal probability.

Typical quantities would now be, e.g. P (S = u|T = t) ≡
p(u|t), the probability that the clock state is u (“up”) at time
t. Or else, P (T = t|S = d) ≡ p(t|d) would be the proba-
bility that the time is t, given that the current state of S is d,
etc. When we optimize clocks, we quantify our criterium of
”performance” as mutual information I(S;T ). This mutual
information tells how much information a previously unin-
formed agent would receive about time after looking at the
clock (averaged for the possible observations of the clock,
“up” or “down”). This quantity, I(S;T ) is directly related
to the probability of guessing time correctly given one ob-
servation of the clock. With this notation, we are ready to
define the clocks. In all our experiments, the clocks will be
initialized at time t = 0 in a fixed known state, specifically u,
i.e. P (S0 = u) ≡ P (S = u|T = 0) = 1 and advance once
in time per tick according to their respective dynamics.

Alternator
We first define the alternator as the 2-state Markov chain
with a symmetric probability to change state.
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Figure 1: The alternator clock. It switches one state to the
other with probability r.
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Figure 2: The alternator clock. Behaviour classes explained
in text.

The plot of p(u | t) in Figure 2, shows the distinction
between different regimes in which the clock operates, de-
pending on r. We notice the analogy with Damped Harmonic
Oscillation: Stuck, for r = 0, the clock is stuck in state u
(not shown in diagram). Overdamped, for 0 < r < 0.5, the
probability distribution behaves like an overdamped oscilla-
tor. It is interesting to note that, in this regime, the probability
distribution of the alternator clock has the same envelope as
the drop clock which we discuss below.Critically Damped,
for r = 0.5, the clock acts analogous to a critically damped
oscillator: it reaches the equilibrium in the shortest possi-
ble amount of time — one time step. Underdamped, for
0.5 < r < 1, the probability distribution behaves like an un-
derdamped oscillator. This can be interpreted as the clock
being initially “synchronized” with time like a clock, but
that the synchronization gets lost as the clock evolves, until
the correlation between t and s disappears. Undamped, for
r = 1, the clock state alternates between u and d. Not shown
in figure. These behaviours are taken from the plot of the
symmetric alternator, but the asymmetric one (with different
transition probabilities u → d and u ← d) has the same
qualitative behaviour, just with a different equilibrium point.
All 2-state Markov chains belong to one these 5 classes. We
will refer to this insight in the results section again.

Drop Clock
Consider the thought experiment of an insect that leaves its
nest to forage or explore. Even if it does not find anything,
the insect should still return at one point, otherwise it risks
getting lost. This insect would profit from a clock telling it

if “it’s been awhile”. An alternator is not well suited for this
task; it measures a local phase (an odd or even step), but it
does not provide much “larger timescale” information, unless
it is overdamped. Instead of the latter, it turns out that a drop
clock is a more natural model for this task.

More complicated models will exist in nature, but our
question is what the simplest ones are. More complex clocks,
such as clocks with time-dependent transition laws require
more memory under the Markovian. Another example is that
of gene regulatory networks which extends beyond discrete
time into continuous time.

ustart d

1− r

r

Figure 3: The drop clock, a Markov chain with a probability
r to permanently transition to state d and remain there.

The drop clock starts (as all our clocks) in a well defined
state, namely u, i.e. P (S = u|T = 0) = 1. After each
time step, there is a probability r that the clock “decays”
(transitions from state u to state d) and a probability 1 − r
that it does not. Once the clock has decayed, it remains in
state d forever. The behaviour that this rule generates is an
exponential decay (1− r)t in time. An agent infers probable
time only from the state of this clock.

Experiments with 1-bit Clocks
Our first experiments are dedicated to the 1-bit (i.e. 2-state)
clocks. As discussed earlier, there are only few distinct
classes of such clocks. Most notable are the 2-state alter-
nator and the drop clock. The alternator offers the maximum
of 1 bit of information about time, namely whether one is in
an odd or even time step. However, this information is purely
local and cannot distinguish whether one is in an early or a
later section of a run. However, even with only 1 bit of state,
the drop clock can provide this distinction, albeit imperfectly
at less than 1 bit resolution. For this to provide best results,
the probabilistic decay rate of the drop clock (unlike the alter-
nator) must be attuned to the length of the total time interval
of interest; this rate will be in general acquired by evolution
or some learning mechanism — here, we will directly obtain
it by optimization of informational costs. This is studied next.
Our axis of time is almost featureless except for two features:
length of time and the grain. The alternator matches the grain
(local information) and the drop clock matches the length
(global information). We do not impose any other features on
the axis of time such as months or seasons because we only
study pure time. For a meaningful link to external events,
that would extend to the work of Klyubin et al. (2007).

Measuring Large Time Scales
We now investigate time measurement by drop clocks at
different timescales. We tune the clock by finding the drop
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probability r maximizing I(S;T ) for the particular timescale
of the experiment. Optimizing this by grid search gives Fig. 4.
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Figure 4: The optimal drop probability r for different
timescales. Note that the curve for the drop clock has a
discontinuity at T ≈ 15.

The first result is that the decay rate r that best resolves
time with a drop clock clearly depends on the time interval.
Such a clock, therefore, must be adapted to the particular
time interval to resolve. Strikingly, we find two regimes
of solutions, namely one with one fixed decay rate (up to
T ≈ 15), and then a time interval-dependent decay rate. An
inspection of Fig. 5 shows a relatively complex landscape
where a global maximum of time information at the maximal
decay rate r = 1 is superseded at larger times by maxima at
lower decay rates.
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Figure 5: Time information for different drop probabilities
and time-spans.

Figure 6 shows with a solid line a vertical slice from Fig-
ure 5 at T = 20. This information curve does not have a
unique maximum, but an inflection. We provide an expla-
nation for the two local maxima by partitioning time into
different features: one-way to look at time is to see an “ear-
lier” and a “later” part and the other way is to look at “odd” vs
“even” times. Our interpretation is that the different maxima
come from information the clock has about different partition-
ings of time. The maximum around r ≈ 0.3 appears to come
from the global picture the clock has (the “earlier” vs “later”
partitioning ) while the second maximum at r = 1
comes from the “odd” vs “even” partitioning ( ).

Lower decay rates prove better at resolving global timing
(early or late), and, while the drop clock is generally weak
at resolving odd/even times, it still performs this resolution

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

Drop Probability r

I
(S

;T
) I(S;T )

I(S; )

I(S; )

Figure 6: Time information for different drop probabilities
at T = 20. Apart from total time information, it shows infor-
mation of clock state S about being in an odd vs. even time
step or early vs. late phase of the measured period.

best for a hard decay of r, right at the beginning of the inter-
val. This explains the phase transition in Fig. 4 between the
regime of small time-spans to that of large time-spans. This
transition occurs because of the inflection in the information
curve of the sharply initialized drop clock, when one maxi-
mum dips down below the other: different parts of the curve
derive from knowing different things and because in some
regimes one dominates the other.

We note that these different regimes make the drop clock
hard to optimize — small time spans require a different strat-
egy than the long ones: not only must the clock be attuned to
a particular time scale to best measure global time, but also
does the information curve of the clock show two maxima
where one overtakes the other.

Bag of Clocks
Having studied the 2-state-clocks we now design a larger
experiment. We would like to keep the clocks simple, but be
able to measure time more accurately. For this purpose, we
consider “bags” of independent clocks to measure time: none
of the clocks in the bag can communicate with any other
clock, but to determine time, we consider the state of the
whole clock collective.

The experiment is started without any clocks and the col-
lection is built up incrementally, one clock at a time by op-
timizing the current clock under consideration. We use this
incremental process to capture our intuition: that in evolu-
tion, existing features tend to be “frozen” because they are
intertwined with the rest of the organism and new features
tend to be optimized in relation to the existing frozen features.
More precisely, assume n clocks are already in the collec-
tion (n = 0, 1, 2 . . . ). Given the state of the clock collection
Sn = (S1, . . . , Sn) with n = 0 indicating the empty collec-
tion, the dynamics of clock n is optimized with grid search as
to maximize I(Sn;T ), always for fixed total duration Tmax;
the dynamic parameters of all clocks k = 1, . . . , n − 1 are
kept fixed during the optimization. Once the optimization
is complete, a new clock n + 1 is added and the procedure
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repeated. In our experiments, we stopped the process, once
we reached 10 clocks. Importantly, in this experiment, the
optimizer is allowed to choose any parameters of the dy-
namics, and the clocks that the optimization finds are a pure
alternator or else, drop clocks. As the collection grows, so
does the achieved time information I(Sn;T ) (Fig. 7). The
first clock, with no oscillatory component added to the bag, is
the alternator, as intuitively expected, as it resolves 1 full bit
of information; but, notably, all subsequent additions to the
bag turn out to be pure drop clocks. The first two clocks add
∼ 1.5 bits, while every subsequent clock adds significantly
less.

2 4 6 8 10
1

1.2
1.4
1.6
1.8
2

Number of clocks

I
(S
k
;T

)

Figure 7: Amount of information as the size of the collection
grows for a time interval of length Tmax = 5.

In detail, we notice that all the clocks except for the first
two have very similar dynamics (parameters not shown here).
In other words, once the first two clocks are added, all fur-
ther clocks essentially act together as an increasingly refined
binomial process, as more clocks are added3. Because the
last clocks added to the bag have almost identical parame-
ters, we ran another calculation to explore the behaviour of
populations of identical drop clocks. We use a bag of pure
drop clocks with the same r = 0.1, starting with one of these
clocks and adding more until we reach a total of 10 clocks.
We compute I(Sn;T ) for a time scale of size 50 to create
Figure 8.
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0.4
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Number of clocks
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Figure 8: Time information as more identical clocks are
added to the set for Tmax = 50.

Composite Clock
Beyond the simplest clocks and unstructured clock bags listed
above, we consider the next more complex clock, a compos-
ite clock consisting of two simple 1-bit clocks each, which,
however, are permitted to communicate, but with a constraint
on how much communication is permitted. This constraint

3Special thanks to Nicola Catenacci-Volpi for this observation.

is expressed as a measure of information flow between the
composite clocks. This information flow constraint is how
we penalize modular systems for their complexity. Consis-
tent with the freezing procedure in the bag-of-clocks exper-
iment we freeze the first clock here as well. Thus, the first
(upper) component of the composite clock becomes an alter-
nator. Only the second (lower) component’s dynamics will
be parametrized and the parameters optimized according to
suitable informational criteria. This one-way communica-
tion is inspired by the semigroup decomposition of counters
(Rhodes, 2009). Future work will allow the first clock to be
optimized as well and add a feedback channel.

SU

SL

SU

SL

SU

SL

SU

SL

Figure 9: The structure of the composite clock unrolled in
time. There is a hierarchy of information flow here. Both
clocks send information to themselves but only the upper
clock sends information to the lower clock.

To prepare the description of the full system, we write out
in detail the first component of the clock as a Markov chain;
it is defined by the matrix AU = [ 0 1

1 0 ] and initial state distri-
bution4 SU0 = [ 10 ]. In the next step, we design the dynamics
of the lower component SL, but it is not independent any-
more. Rather, it can be influenced by the state of the upper
component U . The matrix that will drive the behaviour of
the lower component is a conditional probability distribution,
a mapping from the joint state of both components (SUt , S

L
t )

at time t to the future state of SLt+1 at time t+ 1. There are 4
columns in this matrix because there are four combinations
of the input (i.e. condition) states from both components: uu,
ud, du, dd (both up, one up and the other down, etc.). In
vector notation, the complete probability of the whole system
to be in a state is written as:

P (SU , SL) =


P (SU = u, SL = u)
P (SU = u, SL = d)
P (SU = d, SL = u)
P (SU = d, SL = d)

, (1)

and the transition matrix for the lower clock (we remind that
the upper clock is an alternator and that the first coordinate is
the probability for u and the second the probability for d) as
AL =

[
θ1 θ2 θ3 θ4

1−θ1 1−θ2 1−θ3 1−θ4

]
and where we make use of the

fact that the resulting probabilities add up to 1 (and we thus
need only one parameter to describe each of the condition-
als). Combine now the matrix for the upper component (AU )
and the matrix for the lower component (AL) to obtain the
Markov matrix for the whole clock:

4We use the random variable name as a proxy notation for the
whole distribution.
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A =


0 0 θ3 θ4
0 0 1− θ3 1− θ4
θ1 θ2 0 0

1− θ1 1− θ2 0 0

 .
We initialize the lower clock SL, as always, in state u, i.e.

with probability [ 10 ]. Now we have all required definitions.
Expressed in terms of the joint variable S = (SU , SL), and
following the conventions from (1), the initial state of the
complete clock is S0 = [ 1 0 0 0 ]

′ (where ′ is transpose).
Using A, the matrix that ticks the clock forward to its next
time step, we can simulate the clock starting at time 0 and
into a future time t by repeated matrix multiplication: At.
For illustration, the first few states look like:

Time dynamics of both parts
S0 AS0 A2S0
1

0

0

0




0

0

θ1

1− θ1




θ1θ3 + θ4 (1− θ1)
θ1 (1− θ3) + (1− θ1) (1− θ4)

0

0


Figure 10: The probabilistic state of the composite clock for
t = 0, t = 1 and t = 2.

Experiments with the Composite Clock
The current experiments distinguish themselves from the ear-
lier ones by having the participating clocks communicate:
we create an information “tap” between the two clocks. Im-
portantly, we will limit the amount of information that may
flow from the upper to the lower clock. As discussed ear-
lier, all costs/rewards (e.g. flow vs. time resolution) will be
expressed exclusively in terms of Shannon information as
unique currency of discourse.

In the same spirit as in the bag-of-clocks experiment, we
greedily pre-optimize the upper clock, which results in an
alternator whose parameters will be frozen. Thus, the ex-
periment will only optimize the remaining parameters of the
clock, i.e. the dynamics of the lower clock and the parameters
of its dependence on the upper clock.

While we maximize time information as before, the con-
straint C is put on the capacity of communication (transfer
entropy) from the upper clock to the lower one (T in the
index denotes marginalization over all valid times occurring
in the experiment). Since the system is Markovian, flow only
over a single step is considered. Since the upper clock is
fixed as the alternator, no feedback channel is included. We
compute maxI(SU

T ;SL
T+1|SL

T )≤C I(S;T ).
To optimize with the constraint, we use the Lagrangian

method, i.e. we optimize I(S;T )−λI(SUT ;SLT+1|SLT ). Scan-
ning through the possible values of λ, we cover the spectrum
of clocks arising through possible constraints. We first used
the DIRECT Lipschitzian method for global optimization
(Jones et al., 1993, shown in red in Fig. 11). One finds two
distinct regimes: the perfect clock at C = 1, and distinctly

suboptimal clocks in the regime below around C ≈ 0.2. The
curve breaks off at the low end at about C = 0.04 due to
memory limitations of the Lipschitzian optimizer.

The other optimizer used was COBYLA (Powell, 1994),
where we used a relaxation method to cover the curve. We
started optimization at the permissive information flow bound
C = 1, optimized, then the bound was slowly tightened,
always starting with the clock parameters obtained for the
previous constraint C. The results are shown again in Fig. 11,
but include the black regions in addition to the red. This
optimization being not global, it uncovers additional structure
in the solution space. First of all, when, starting at the optimal
clock C = 1, C is reduced, the trade-off curve between the
constraint C and the time information I(S;T ) falls below
the convex hull of the (globally optimal) red solutions. These
black points will thus never be found by a global optimization
of the Lagrangian. They correspond to “fuzzy” counters
(the optimal clock is a binary counter), but do not trade in
information flow and achieved time information in a well-
balanced way, although part of that portion of the curve is
still Pareto-optimal (is not superseded simultaneously by
solutions better in terms of both C and I(S;T )).

In the range C ≈ 0.5 − 0.7, no solution is found. Be-
tween C ≈ 0.25− 0.5, a class of locally optimal solutions is
found which is neither findable by the Lagrangian, thus not
on the convex hull, nor is it Pareto optimal. Finally, below
C = 0.25, one regains the lower C regime from the global
optimization. The curve continues down to C = 0 (contin-
uation of the red to the black curve), not suffering from the
memory problems of the global optimizer. The two clock
classes below C ≈ 0.5 look very similar as a whole clock,
but distribute the “counting” differently over their component
clocks.

0 0.2 0.4 0.6 0.8 1
1.4

1.6

1.8

2

Information Flow Constraint C (in bits)

I
(S

;T
)

Figure 11: In red, the optimum curve found by the DIRECT
global Lipschitz optimizer. In black, the more complete curve
found by the COBYLA local optimizer.

Apart from the discovery of different clock “regimes”,
detailed inspection of the space of possible configurations
(not shown here) demonstrate that, in part, finding parameters
which achieve high values of time information is difficult
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and, despite large permitted flows C, time resolution may
still have low values. This makes it clear that measuring time
is not an incidental effect that is likely to be found en passant,
but one rather will expect good time measurement abilities
to have been optimized for, either directly or indirectly (via
proxy criteria). In any case, the clocks in the hierarchy need
to be attuned to each other for optimal effect.

Final Comments and Future Work
We have studied the ability of minimal clocks to resolve time
information. In particular, even 1-bit clocks can, as drop
clocks, provide information about global time if the overall
time horizon is known when the clock parameters are set.
The relation of measured interval and clock parameters is
not straightforward and marked by an interplay of global and
local properties (Fig. 6). When extending to a bag-of-clocks,
the first two clocks are an alternator and a drop clock, but all
further drop clocks are nearly identical, so that apart from the
first two, the rest of the clocks operate as a nearly binomial
process. Finally, when two clocks are stacked together with
limited communication, a rich set of regimes opens up, of
which just two, the perfect clock, and a very soft clock, can
be Lagrange-optimal. These studies provide a spectrum of
candidates for behaviours of minimal clocks which one could
try to identify in biological systems.

One limitation of the present work is the assumption of a
fixed, global tick which drives all the clocks. Future work
will, therefore, include the consideration of clocks in contin-
uous time, where the dynamics needs to establish and sustain
a synchronization between the subclocks in addition to the
coordination of their respective resolution regime.

We conjecture that informationally optimal clocks will
exhibit some robustness. Applying a criterium of robustness
to them is left for future work.
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