612 research outputs found

    Minimally Disruptive Cooperative Lane-change Maneuvers

    Full text link
    A lane-change maneuver on a congested highway could be severely disruptive or even infeasible without the cooperation of neighboring cars. However, cooperation with other vehicles does not guarantee that the performed maneuver will not have a negative impact on traffic flow unless it is explicitly considered in the cooperative controller design. In this letter, we present a socially compliant framework for cooperative lane-change maneuvers for an arbitrary number of CAVs on highways that aims to interrupt traffic flow as minimally as possible. Moreover, we explicitly impose feasibility constraints in the optimization formulation by using reachability set theory, leading to a unified design that removes the need for an iterative procedure used in prior work. We quantitatively evaluate the effectiveness of our framework and compare it against previously offered approaches in terms of maneuver time and incurred throughput disruption.Comment: 6 pages, 2 figure

    Control and optimization methods for problems in intelligent transportation systems

    Full text link
    This thesis aims to address three research topics in intelligent transportation systems which include multi-intersection traffic light control based on stochastic flow models with delays and blocking, optimization of mobility-on-demand systems using event-driven receding horizon control and the optimal control of lane change maneuvers in highways for connected and automated vehicles. First, for the traffic light control work, we extend Stochastic Flow Models (SFMs), used for a large class of discrete event and hybrid systems, by including the delays which typically arise in flow movements, as well as blocking effects due to space constraints. We apply this framework to the multi-intersection traffic light control problem by including transit delays for vehicles moving from one intersection to the next and possible blocking between two intersections. Using Infinitesimal Perturbation Analysis (IPA) for this SFM with delays and possible blocking, we derive new on-line gradient estimates of several congestion cost metrics with respect to the controllable green and red cycle lengths. The IPA estimators are used to iteratively adjust light cycle lengths to improve performance and, in conjunction with a standard gradient-based algorithm, to obtain optimal values which adapt to changing traffic conditions. The second problem relates to developing an event-driven Receding Horizon Control (RHC) scheme for a Mobility-on-Demand System (MoDS) in a transportation network where vehicles may be shared to pick up and drop off passengers so as to minimize a weighted sum of passenger waiting and traveling times. Viewed as a discrete event system, the event-driven nature of the controller significantly reduces the complexity of the vehicle assignment problem, thus enabling its real-time implementation. Finally, optimal control policies are derived for a Connected Automated Vehicle (CAV) cooperating with neighboring CAVs in order to implement a lane change maneuver consisting of a longitudinal phase where the CAV properly positions itself relative to the cooperating neighbors and a lateral phase where it safely changes lanes. For the first phase, the maneuver time subject to safety constraints and subsequently the associated energy consumption of all cooperating vehicles in this maneuver are optimized. For the second phase, time and energy are jointly optimized based on three different solution methods including a real-time approach based on Control Barrier Functions (CBFs). Structural properties of the optimal policies which simplify the solution derivations are provided in the case of the longitudinal maneuver, leading to analytical optimal control expressions. The solutions, when they exist, are guaranteed to satisfy safety constraints for all vehicles involved in the maneuver

    Fully automated urban traffic system

    Get PDF
    The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible

    Vehicular Cooperative Maneuvers -- Quo Vaditis?

    Full text link
    Vehicles will not only get more and more automated, but they will also cooperate in new ways. Currently, human-driven vehicles begin to communicate with each other using vehicle-to-everything technology. Future vehicles will use communication to share sensor data and even negotiate cooperative maneuvers. This lets them learn more about the environment and improves traffic flow and passenger comfort as more predictable maneuvers are likely to lead to a smoother ride. This paper introduces the most important concepts around cooperative vehicular maneuvers. We also summarize currently open challenges and questions to answer before a deployment can begin. Afterward, we give some perspectives on the further evolution of cooperative maneuvers and beyond.Comment: 8 pages incl. references and author biographies, 4 figures incl. multiple sub-figure

    Lane Change in Automated Driving: An Explicit Coordination Strategy

    Get PDF

    Driver Assistance for Safe and Comfortable On-Ramp Merging Using Environment Models Extended through V2X Communication and Role-Based Behavior Predictions

    Full text link
    Modern driver assistance systems as well as autonomous vehicles take their decisions based on local maps of the environment. These maps include, for example, surrounding moving objects perceived by sensors as well as routes and navigation information. Current research in the field of environment mapping is concerned with two major challenges. The first one is the integration of information from different sources e.g. on-board sensors like radar, camera, ultrasound and lidar, offline map data or backend information. The second challenge comprises in finding an abstract representation of this aggregated information with suitable interfaces for different driving functions and traffic situations. To overcome these challenges, an extended environment model is a reasonable choice. In this paper, we show that role-based motion predictions in combination with v2x-extended environment models are able to contribute to increased traffic safety and driving comfort. Thus, we combine the mentioned research areas and show possible improvements, using the example of a threading process at a motorway access road. Furthermore, it is shown that already an average v2x equipment penetration of 80% can lead to a significant improvement of 0.33m/s^2 of the total acceleration and 12m more safety distance compared to non v2x-equipped vehicles during the threading process.Comment: the article has been accepted for publication during the 16th IEEE International Conference on Intelligent Computer Communication and Processing (ICCP 2020), 8 pages, 8 figures, 1 tabl

    Multi-Agent Reinforcement Learning for Connected and Automated Vehicles Control: Recent Advancements and Future Prospects

    Full text link
    Connected and automated vehicles (CAVs) have emerged as a potential solution to the future challenges of developing safe, efficient, and eco-friendly transportation systems. However, CAV control presents significant challenges, given the complexity of interconnectivity and coordination required among the vehicles. To address this, multi-agent reinforcement learning (MARL), with its notable advancements in addressing complex problems in autonomous driving, robotics, and human-vehicle interaction, has emerged as a promising tool for enhancing the capabilities of CAVs. However, there is a notable absence of current reviews on the state-of-the-art MARL algorithms in the context of CAVs. Therefore, this paper delivers a comprehensive review of the application of MARL techniques within the field of CAV control. The paper begins by introducing MARL, followed by a detailed explanation of its unique advantages in addressing complex mobility and traffic scenarios that involve multiple agents. It then presents a comprehensive survey of MARL applications on the extent of control dimensions for CAVs, covering critical and typical scenarios such as platooning control, lane-changing, and unsignalized intersections. In addition, the paper provides a comprehensive review of the prominent simulation platforms used to create reliable environments for training in MARL. Lastly, the paper examines the current challenges associated with deploying MARL within CAV control and outlines potential solutions that can effectively overcome these issues. Through this review, the study highlights the tremendous potential of MARL to enhance the performance and collaboration of CAV control in terms of safety, travel efficiency, and economy

    From a Competition for Self-Driving Miniature Cars to a Standardized Experimental Platform: Concept, Models, Architecture, and Evaluation

    Full text link
    Context: Competitions for self-driving cars facilitated the development and research in the domain of autonomous vehicles towards potential solutions for the future mobility. Objective: Miniature vehicles can bridge the gap between simulation-based evaluations of algorithms relying on simplified models, and those time-consuming vehicle tests on real-scale proving grounds. Method: This article combines findings from a systematic literature review, an in-depth analysis of results and technical concepts from contestants in a competition for self-driving miniature cars, and experiences of participating in the 2013 competition for self-driving cars. Results: A simulation-based development platform for real-scale vehicles has been adapted to support the development of a self-driving miniature car. Furthermore, a standardized platform was designed and realized to enable research and experiments in the context of future mobility solutions. Conclusion: A clear separation between algorithm conceptualization and validation in a model-based simulation environment enabled efficient and riskless experiments and validation. The design of a reusable, low-cost, and energy-efficient hardware architecture utilizing a standardized software/hardware interface enables experiments, which would otherwise require resources like a large real-scale test track.Comment: 17 pages, 19 figues, 2 table
    corecore