270,090 research outputs found

    Parameter mismatches,variable delay times and synchronization in time-delayed systems

    Full text link
    We investigate synchronization between two unidirectionally linearly coupled chaotic non-identical time-delayed systems and show that parameter mismatches are of crucial importance to achieve synchronization. We establish that independent of the relation between the delay time in the coupled systems and the coupling delay time, only retarded synchronization with the coupling delay time is obtained. We show that with parameter mismatch or without it neither complete nor anticipating synchronization occurs. We derive existence and stability conditions for the retarded synchronization manifold. We demonstrate our approach using examples of the Ikeda and Mackey-Glass models. Also for the first time we investigate chaos synchronization in time-delayed systems with variable delay time and find both existence and sufficient stability conditions for the retarded synchronization manifold with the coupling delay lag time. Also for the first time we consider synchronization between two unidirectionally coupled chaotic multi-feedback Ikeda systems and derive existence and stability conditions for the different anticipating, lag, and complete synchronization regimes.Comment: 12 page

    Synchronization of chaotic oscillator time scales

    Full text link
    This paper deals with the chaotic oscillator synchronization. A new approach to detect the synchronized behaviour of chaotic oscillators has been proposed. This approach is based on the analysis of different time scales in the time series generated by the coupled chaotic oscillators. It has been shown that complete synchronization, phase synchronization, lag synchronization and generalized synchronization are the particular cases of the synchronized behavior called as "time--scale synchronization". The quantitative measure of chaotic oscillator synchronous behavior has been proposed. This approach has been applied for the coupled Rossler systems.Comment: 29 pages, 11 figures, published in JETP. 100, 4 (2005) 784-79

    Feedback-dependent control of stochastic synchronization in coupled neural systems

    Full text link
    We investigate the synchronization dynamics of two coupled noise-driven FitzHugh-Nagumo systems, representing two neural populations. For certain choices of the noise intensities and coupling strength, we find cooperative stochastic dynamics such as frequency synchronization and phase synchronization, where the degree of synchronization can be quantified by the ratio of the interspike interval of the two excitable neural populations and the phase synchronization index, respectively. The stochastic synchronization can be either enhanced or suppressed by local time-delayed feedback control, depending upon the delay time and the coupling strength. The control depends crucially upon the coupling scheme of the control force, i.e., whether the control force is generated from the activator or inhibitor signal, and applied to either component. For inhibitor self-coupling, synchronization is most strongly enhanced, whereas for activator self-coupling there exist distinct values of the delay time where the synchronization is strongly suppressed even in the strong synchronization regime. For cross-coupling strongly modulated behavior is found

    Synchronization service integrated into routing layer in wireless sensor networks

    Get PDF
    The time synchronization problem needs to be considered in a distributed system. In Wireless Sensor Networks (WSNs) this issue must be solved with limited computational, communication and energy resources. Many synchronization protocols exist for WSNs. However, in most cases these protocols are independent entities with specific packets, communication scheme and network hierarchy. This solution is not energy efficient. Because it is very rare for synchronization not to be necessary in WSNs, we advocate integrating the synchronization service into the routing layer. We have implemented this approach in a new synchronization protocol called Routing Integrated Synchronization Service (RISS). Our tests show that RISS is very time and energy efficient and also is characterized by a small overhead. We have compared its performance experimentally to that of the FTSP synchronization protocol and it has proved to offer better time precision than the latter protocol

    Phase Synchronization in Temperature and Precipitation Records

    Get PDF
    We study phase synchronization between atmospheric variables such as daily mean temperature and daily precipitation records. We find significant phase synchronization between records of Oxford and Vienna as well as between the records of precipitation and temperature in each city. To find the time delay in the synchronization between the records we study the time lag phase synchronization when the records are shifted by a variable time interval of days. We also compare the results of the method with the classical cross-correlation method and find that in certain cases the phase synchronization yields more significant results.Comment: 11 pages including 8 figure
    corecore