2,607,245 research outputs found
On the Cyclotomic Quantum Algebra of Time Perception
I develop the idea that time perception is the quantum counterpart to time
measurement. Phase-locking and prime number theory were proposed as the
unifying concepts for understanding the optimal synchronization of clocks and
their 1/f frequency noise. Time perception is shown to depend on the
thermodynamics of a quantum algebra of number and phase operators already
proposed for quantum computational tasks, and to evolve according to a
Hamiltonian mimicking Fechner's law. The mathematics is Bost and Connes quantum
model for prime numbers. The picture that emerges is a unique perception state
above a critical temperature and plenty of them allowed below, which are
parametrized by the symmetry group for the primitive roots of unity. Squeezing
of phase fluctuations close to the phase transition temperature may play a role
in memory encoding and conscious activity
Perception-aware time optimal path parameterization for quadrotors
The increasing popularity of quadrotors has given rise to a class of
predominantly vision-driven vehicles. This paper addresses the problem of
perception-aware time optimal path parametrization for quadrotors. Although
many different choices of perceptual modalities are available, the low weight
and power budgets of quadrotor systems makes a camera ideal for on-board
navigation and estimation algorithms. However, this does come with a set of
challenges. The limited field of view of the camera can restrict the visibility
of salient regions in the environment, which dictates the necessity to consider
perception and planning jointly. The main contribution of this paper is an
efficient time optimal path parametrization algorithm for quadrotors with
limited field of view constraints. We show in a simulation study that a
state-of-the-art controller can track planned trajectories, and we validate the
proposed algorithm on a quadrotor platform in experiments.Comment: Accepted to appear at ICRA 202
The influence of affective factors on time perception
Several studies have suggested that both affective valence and arousal affect the perception of time. How-ever, in previous experiments these two affective dimensions were not systematically controlled. In the present study, a set of emotional slides rated for valence and arousal (International Affective Picture System) were projected to two groups of subjects for 2, 4 and 6 sec. One group estimated the duration on an analog scale and a second group reproduced the interval by pushing a button. Heart rate and skin conductance responses were also recorded. A highly significant valence by arousal interaction affected duration judg-ments. For low arousal stimuli, the duration of negative slides was judged relatively shorter than the duration of positive slides. For high arousal stimuli, the duration of negative slides was judged longer than the dura-tion of positive slides. These results are interpreted within a model of action tendency, in which the level of arousal controls two different motivational mechanisms, one emotional and the other attentional
Distortions of Subjective Time Perception Within and Across Senses
Background: The ability to estimate the passage of time is of fundamental importance for perceptual and cognitive processes. One experience of time is the perception of duration, which is not isomorphic to physical duration and can be distorted by a number of factors. Yet, the critical features generating these perceptual shifts in subjective duration are not understood.
Methodology/Findings: We used prospective duration judgments within and across sensory modalities to examine the effect of stimulus predictability and feature change on the perception of duration. First, we found robust distortions of perceived duration in auditory, visual and auditory-visual presentations despite the predictability of the feature changes in the stimuli. For example, a looming disc embedded in a series of steady discs led to time dilation, whereas a steady disc embedded in a series of looming discs led to time compression. Second, we addressed whether visual (auditory) inputs could alter the perception of duration of auditory (visual) inputs. When participants were presented with incongruent audio-visual stimuli, the perceived duration of auditory events could be shortened or lengthened by the presence of conflicting visual information; however, the perceived duration of visual events was seldom distorted by the presence of auditory information and was never perceived shorter than their actual durations.
Conclusions/Significance: These results support the existence of multisensory interactions in the perception of duration and, importantly, suggest that vision can modify auditory temporal perception in a pure timing task. Insofar as distortions in subjective duration can neither be accounted for by the unpredictability of an auditory, visual or auditory-visual event, we propose that it is the intrinsic features of the stimulus that critically affect subjective time distortions
Recommended from our members
Dopamine, time perception, and future time perspective.
RationaleImpairment in time perception, a critical component of decision-making, represents a risk factor for psychiatric conditions including substance abuse. A therapeutic that ameliorates this impairment could be advantageous in the treatment of impulsivity and decision-making disorders.ObjectivesHere we hypothesize that the catechol-O-methyltransferase (COMT) inhibitor tolcapone, which increases dopamine tone in frontal cortex (Ceravolo et al Synapse 43:201-207, 2002), improves time perception, with predictive behavioral, genetic, and neurobiological components.MethodsSubjects (n = 66) completed a duration estimation task and other behavioral testing in each of two sessions after receiving a single oral dose of tolcapone (200 mg) or placebo in randomized, double-blind, counterbalanced, crossover fashion. Resting state fMRI data were obtained in a subset of subjects (n = 40). Subjects were also genotyped for the COMT (rs4680) polymorphism.ResultsTime perception was significantly improved across four proximal time points ranging from 5 to 60 s (T(524) = 2.04, p = 0.042). The degree of this improvement positively correlated with subjective measures of stress, depression, and alcohol consumption and was most robust in carriers of the COMT Val158 allele. Using seed regions defined by a previous meta-analysis (Wiener et al Neuroimage 49:1728-1740, 2010), we found not only that a connection from right inferior frontal gyrus (RIFG) to right putamen decreases in strength on tolcapone versus placebo (p < 0.05, corrected), but also that the strength of this decrease correlates inversely with the increase in duration estimation on tolcapone versus placebo (r = - 0.37, p = 0.02).ConclusionsCompressed time perception can be ameliorated by administration of tolcapone. Additional studies should be conducted to determine whether COMT inhibitors may be effective in treating decision-making disorders and addictive behaviors
Perception of Waiting Time at Signalized Intersections
Perceived waiting time at signalized intersections differs from the real value, and varies with signal design. The onerousness of delay depends on the conditions under which it is experienced. Using weighted travel time time may contribute to optimal signal control if its use can improve upon assuming that all time is weighted equally by users. This research explores the perception of waiting time at signalized intersections based on the results of an online survey, which directly collected the perceived waiting time and the user ratings of the signal designs of each intersection on an arterial including 3 intersections. Statistically analyzing the survey data suggests the perception of waiting time is a function of the real time; and a quadratic model better can describes relationship. The survey also indicates that there exists a tradeoff between the total waiting time and the individual waiting time of each intersection. It turns out that drivers prefer to split the total waiting time at different intersections at the price of a longer total wait if the difference of the total waiting time of two signal designs is within 30 seconds. The survey data shows that the perceived waiting time, instead of the real waiting time, better explains how users will rate the individual signal designs for both intersections and arterials including multiple intersections.Traffic Signal, Stated Preference, Virtual Experience Stated Preference, Signalized Intersection, Value of Time, Perception of Time
Negative emotionality influences the effects of emotion on time perception
In this study I used a temporal bisection task to test if greater overestimation of time due to negative emotion is moderated by individual differences in negative emotionality. The effects of fearful facial expressions on time perception were also examined. After a training phase, participants estimated the duration of facial expressions (anger, happiness, fearfulness) and a neutral-baseline facial expression. In accordance to the operation of an arousal-based process, the duration of angry expressions was consistently overestimated relative to other expressions and the baseline condition. In support of a role for individual differences in negative emotionality on time perception, temporal bias due to angry and fearful expressions was positively correlated to individual differences in self-reported negative emotionality. The results are discussed in relation both to the literature on attentional bias to facial expressions in anxiety and fearfulness and also, to the hypothesis that angry expressions evoke a fear-specific response. © 2008 American Psychological Association
- …
