259 research outputs found

    Symmetries of Monocoronal Tilings

    Get PDF
    The vertex corona of a vertex of some tiling is the vertex together with the adjacent tiles. A tiling where all vertex coronae are congruent is called monocoronal. We provide a classification of monocoronal tilings in the Euclidean plane and derive a list of all possible symmetry groups of monocoronal tilings. In particular, any monocoronal tiling with respect to direct congruence is crystallographic, whereas any monocoronal tiling with respect to congruence (reflections allowed) is either crystallographic or it has a one-dimensional translation group. Furthermore, bounds on the number of the dimensions of the translation group of monocoronal tilings in higher dimensional Euclidean space are obtained.Comment: 26 pages, 66 figure

    Spherical Tiling by 12 Congruent Pentagons

    Full text link
    The tilings of the 2-dimensional sphere by congruent triangles have been extensively studied, and the edge-to-edge tilings have been completely classified. However, not much is known about the tilings by other congruent polygons. In this paper, we classify the simplest case, which is the edge-to-edge tilings of the 2-dimensional sphere by 12 congruent pentagons. We find one major class allowing two independent continuous parameters and four classes of isolated examples. The classification is done by first separately classifying the combinatorial, edge length, and angle aspects, and then combining the respective classifications together.Comment: 53 pages, 40 figures, spherical geometr

    Spherical tilings by congruent quadrangles : forbidden cases and substructures

    Get PDF
    In this article we show the non-existence of a class of spherical tilings by congruent quadrangles. We also prove several forbidden substructures for spherical tilings by congruent quadrangles. These are results that will help to complete of the classification of spherical tilings by congruent quadrangles

    Periodic Planar Disk Packings

    Full text link
    Several conditions are given when a packing of equal disks in a torus is locally maximally dense, where the torus is defined as the quotient of the plane by a two-dimensional lattice. Conjectures are presented that claim that the density of any strictly jammed packings, whose graph does not consist of all triangles and the torus lattice is the standard triangular lattice, is at most nn+1Ď€12\frac{n}{n+1}\frac{\pi}{\sqrt{12}}, where nn is the number of packing disks. Several classes of collectively jammed packings are presented where the conjecture holds.Comment: 26 pages, 13 figure
    • …
    corecore