562 research outputs found

    Intrinsic universality and the computational power of self-assembly

    Full text link
    This short survey of recent work in tile self-assembly discusses the use of simulation to classify and separate the computational and expressive power of self-assembly models. The journey begins with the result that there is a single universal tile set that, with proper initialization and scaling, simulates any tile assembly system. This universal tile set exhibits something stronger than Turing universality: it captures the geometry and dynamics of any simulated system. From there we find that there is no such tile set in the noncooperative, or temperature 1, model, proving it weaker than the full tile assembly model. In the two-handed or hierarchal model, where large assemblies can bind together on one step, we encounter an infinite set, of infinite hierarchies, each with strictly increasing simulation power. Towards the end of our trip, we find one tile to rule them all: a single rotatable flipable polygonal tile that can simulate any tile assembly system. It seems this could be the beginning of a much longer journey, so directions for future work are suggested.Comment: In Proceedings MCU 2013, arXiv:1309.104

    Nascent nanocomputers: DNA self-assembly in O(1) stages

    Get PDF
    DNA self-assembly offers a potential for nanoscale microcircuits and computers. To make that potential possible requires the development of reliable and efficient tile assembly models. Efficiency is often achieved by minimizing tile complexity, as well as by evaluating the cost and reliability of the specific elements of each tile assembly model. We consider a 2D tile assembly model at temperature 1. The standard 2D tile assembly model at temperature 1 has a tile complexity of O(n) for the construction of exact, complete n x n squares. However, previous research found a staged tile assembly model achieved a tile complexity of O(1) to construct n x n squares, with O(logn) stages. Our staged tile assembly model achieves a tile complexity of O(logn) using only O(1) stages to construct n x n squares

    Limitations of Self-Assembly at Temperature One (extended abstract)

    Full text link
    We prove that if a subset X of the integer Cartesian plane weakly self-assembles at temperature 1 in a deterministic (Winfree) tile assembly system satisfying a natural condition known as *pumpability*, then X is a finite union of doubly periodic sets. This shows that only the most simple of infinite shapes and patterns can be constructed using pumpable temperature 1 tile assembly systems, and gives strong evidence for the thesis that temperature 2 or higher is required to carry out general-purpose computation in a tile assembly system. Finally, we show that general-purpose computation is possible at temperature 1 if negative glue strengths are allowed in the tile assembly model
    • …
    corecore