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ABSTRACT 
 
 

Barnes, Michael C., Nascent Nanocomputers:  DNA Self-Assembly in O(1) Stages. Master of 

Science (MS), May, 2013, 39 pp., 3 tables, 12 illustrations, references, 36 titles.  

DNA self-assembly offers a potential for nanoscale microcircuits and computers.  To 

make that potential possible requires the development of reliable and efficient tile assembly 

models.  Efficiency is often achieved by minimizing tile complexity, as well as by evaluating the 

cost and reliability of the specific elements of each tile assembly model.  We consider a 2D tile 

assembly model at temperature 1.  The standard 2D tile assembly model at temperature 1 has a 

tile complexity of O(n) for the construction of exact, complete n x n squares.  However, previous 

research found a staged tile assembly model achieved a tile complexity of O(1) to construct n x n 

squares, with O(logn) stages. Our staged tile assembly model achieves a tile complexity of 

O(logn) using only O(1) stages to construct n x n squares.
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CHAPTER I 
 
 

INTRODUCTION 
 
 

DNA Self-Assembly 

 DNA self-assembly is an exciting field that combines state of the art research in 

biological sciences with heavy-hitting algorithms designed by some of the top computational 

theorists in the world.  The goal is no less than to manipulate, control, and commandeer the 

building blocks of life, DNA, and to use these nanostructures to design the next generation of 

miniature circuits, and even DNA-sized devices capable of computation.  Self-assembly 

generally is described by Adleman [2] as “the ubiquitous process by which simple objects 

autonomously assemble into intricate complexes.”  As Doty shows [12], this type of engineering 

is very “hands-off.”  He explains that “the right molecules are placed in solution, and the 

structures and devices self-assemble spontaneously according to the principles of chemical 

kinetics.”  Adleman [2] continues to suggest that “self-assembly processes will ultimately be 

used in circuit fabrication, nano-robotics, DNA computation, and amorphous computing.”  As 

this introduction will show, these outputs are not science fiction, but theoretically proven and 

therefore plausible science futures. 

The Standard Tile Assembly Model 

 There are many good overviews of the origin of the field of DNA Self-Assembly [1, 2, 4, 

13, 27, 28].  Each of these overviews begin with a description of the abstract tile concept 

advanced by Wang [32, 33].  Wang tiles are four-sided, non-rotatable, and each side has a glue 
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that allows it to attach to abutting tiles with a similar glue type.  Glue types are defined by a label 

on each side of the tile.  The Wang tile concept is removed from the abstract by Winfree [34, 36] 

who proved that DNA, either natural or synthetic, can be converted to an equivalent form, based 

on previous pioneer research by Seeman [29].  Thus, the entire field of DNA self-assembly is 

based on the ability to associate a theoretical concept, the Wang tile, with a real-world 

environment, DNA manipulation at the nanoscale, as described by Winfree.   

 The idea of a temperature is introduced by Winfree [34] to ensure that two corresponding 

glues will only attach if their overall strength is equal to or greater than the temperature of the 

system.  The standard temperature 2 model is thus established by Winfree [34, 36].  DNA tiles 

are also generally described as floating on a 2D surface. Each tile assembly model consists of a 

finite number of tile types, assuming an infinite number of copies of each tile type [12].  All of 

these conditions are referred to collectively as the abstract tile assembly model (aTAM), as 

refined by Rothemund and Winfree [27].   

 Because Wang’s abstract tile model was already proven to simulate any universal Turing 

machine, the abstract tile assembly model possesses the same computational power.  Hence the 

premise and the promise; nanocomputers build out of DNA are plausible science future, not 

science fiction.  Specifically, while Winfree [34] showed that the aTAM can simulate any 

universal Turing Machine, research by Doty, et al. [12] shows that the tile assembly model is 

intrinsically universal, by which they mean that not only can the aTAM tell us what a universal 

Turing Machine does, but it can actually perform the functions described. 

 In computer science, there is a necessary emphasis on the efficiency of a given algorithm, 

as encouraged by Turing [31].  Specifically, in the field of DNA self-assembly, the emphasis is 

on the use of tile complexity to determine the efficiency of tile-assembly models [23, 30].  Tile 
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complexity is generally defined as the number of unique tile types needed to complete a given 

construction.  The number of tile types needed is typically based on a measure of tiles and glues.  

If we let t and g represent the total tiles and glues in a system, respectively, then optimal 

solutions involve a t and g count that follow a logarithmic trend, or at least O(logn).  Anything 

more complex than this becomes difficult to recreate in a laboratory setting.  A complexity of 

O(1), which refers to a constant number of elements, c is the best possible outcome for any 

measure of computational complexity.  A common construction emphasized here is the n x n 

square, which is described in one paper as the “canonical” construction [21] for the field.  So the 

typical goal is to pursue a tile type complexity of as close to O(1) as possible, while achieving an 

exact n x n construction. 

 Generally, most researchers emphasize temperature 2 models, and several papers address 

the limitations of temperature 1 constructions [14, 27].  Specifically, temperature 1 tile assembly 

models were shown to require at least as many tile types as the diameter of the assembled shape 

[24].  However, research that emphasizes the limitations of temperature 1 systems tends to 

assume that there are no significant modifications to the aTAM.  Research that allowed for 

reasonable modifications to temperature 1 tile-assembly models showed results that were 

consistent with temperature 2 constructions.  These modifications include the introduction of a 

negative glue [25], the use of a 3D tile assembly model [9], and most crucially for our paper, the 

introduced of a staged tile assembly model sTAM [10, 11, 19].  Specifically, the work of 

Schweller within the Computer Science department at the University of Texas – Pan American 

emphasizes attention to potential variations in temperature 1 models with efficient tile 

complexities [9, 10, 25]. 
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 It is also important to consider the discussion by Doty [15] who asserts that speed, which 

in the case of the aTAM is associated with efficient use of distinct tile types, is not the only 

consideration in determining an effective algorithm.  Correctness is also critical.  For this reason, 

there has been considerable emphasis, not just on efficient constructions using the aTAM and 

other models, but also on error-resistant approaches, referred to as robustness [20].  Significant 

research has been conducted to improve the robustness of tile assembly models [21, 26, 35].  

There is also some argument [9] that temperature 1 systems may have advantages when it comes 

to robustness, over the standard temperature 2 model (aTAM). 

 To achieve robustness in tile assembly models, researchers introduce assumptions to 

define the boundaries that separate reality from the theoretical realm.  Some of these assumptions 

are applied so frequently that they become standard operating procedures.  One of these 

examples include the assumption that mismatches are not possible.  A mismatch would mean that 

two tiles whose glues do not match adhere accidentally, or incidentally, by being pressed into 

one another after legitimate bonds take effect, and create flaws in the final structure.  This is 

common with large repetitions in a laboratory setting, and compares to the existence of genetic 

defects in real life.  Another example is that of partial construction.  Most researchers assume 

that every piece of their model will assembly completely, and that a given structure will not 

progress to a later stage as a partial construction at any point.  While partial constructions are a 

very real possibility in lab settings, most computational theorists assume that over a large enough 

sample, partial constructions can simply be discarded, or “washed away,” leaving behind the 

complete terminal structure the system seeks to construct.  Models that can account for these 

errors without relying on the assumptions above would be described as significantly more error-

resistant, and pursuit of these tile assembly models is a worthy direction for future research. 
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The Staged Tile Assembly Model 

 In this paper, we try to maximize the potential for DNA self-assembly at temperature 1.  

Temperature 2 models have shown an amazing diversity of powerful solutions to complex 

problems that have no proven solutions at temperature 1 [14].  However, the cost of creating and 

running a temperature 1 model in a laboratory setting is significantly less, and performance 

guarantees of O(logn) or better at temperature 1 are worth exploring as alternatives to more 

complex temperature 2 approaches.  Specifically, we extend the recent success of the staged 

assembly model [9] (sTAM) to create a modified staged tile self-assembly model that uses a 

constant number of stages, or O(1), to construct n x n squares, using an upper-bound of O(logn) 

tile-types and distinct glues.   

 The original staged tile assembly model (sTAM) focused on a constant number of tile 

types, or a tile set with complexity O(1).  The standard tile assembly model, as described in the 

introduction, depends upon a set of DNA tiles that are engineered, then introduced into a 

solution, in which they perform interactions based on chemistry [13], and after a certain period 

of time, self-assemble into their terminal shapes.  The staged assembly model adds a layer of 

complexity to the stage at which the DNA tiles are introduced into a solution.  Instead of a single 

beaker or bin into which all the DNA tiles are mixed at once, there are some number of bins 

which hold some number of DNA tile types, which can be introduced into new bins and mixed 

based on a particular sequence, like mixing bowls in a baking recipe.  Each step in the sequence 

is called a stage.  So staged self-assembly refers to the introduction of tile types into a solution 

based on a particular sequence.  The use of stages is a way to simulate some temperature 2 

operations, including the ability to design an assembly system in sequence, and control the order 

of interactions between different tiletypes. 
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CHAPTER II 
 
 

A MODIFIED STAGED TILE ASSEMBLY MODEL 
 
 

To approach the same tile complexity needed to construct exact shapes, such as an n x n 

square, with a temperature 2 model, using instead a temperature 1 tile assembly model, requires 

that we modify the standard tile assembly model.  Without any additional elements, the 

performance of a temperature 1 tile assembly model cannot improve upon the established lower 

bound for tile complexity.  In this chapter we describe the specific changes we make in our 

modified staged tile assembly model. 

 While prior research into the staged assembly model proved that a constant number of tile 

types can be used to create exact shapes [10], for example the n x n square, with a stage 

complexity of O(logn), we are considering an alternative case, where we use constant stages, or a 

stage complexity of O(1) and a tile type complexity of O(logn).  All of these alternate paths offer 

the practical biological researcher a range of options to consider based on what is determined to 

be the right mix of efficiency in an actual laboratory setting.  If a staged tile assembly model is 

considered to be prohibitively expensive at a stage complexity of O(logn), but tile type 

complexity is less expensive, then a staged tile assembly model with a stage complexity of O(1) 

may be preferred.  Additionally, Becker [4] discusses the idea of time complexity, which is 

generally assumed to be O(n) for most models.  Since a stage complexity of O(logn) may 

significantly increase the time complexity, an O(1) stage complexity may be beneficial still. 
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 Consistent with the standard tile assembly model, our staged tile assembly model is 

nondeterministic, and we will assume an infinite number of copies of each tile type are available. 

Our tile types are all defined as Wang non-rotatable tiles.  Each stage will terminate when a 

sufficiently large number of each of the terminal constructions for that stage have been created.  

At the end of each stage, unused constructions, tiles, and glues will be washed away, leaving 

only the terminal constructions accessible to new tile types introduced in the next stage of the 

sequence.  We also assume that glue mismatches are not permitted.   

O(1) Bin Complexity 

While research has been done that looks at the effects of different levels of bin 

complexity [19], for our modified staged tile assembly model we consider a constant number of 

bins, or a bin complexity of O(1).  Specifically, for the purposes of our tile assembly model we 

assume a single mixing bin, and will no longer refer to bins in this particular work.   

Implementing A Binary Counter 

 The use of a binary counter is essential to the overall construction of our n x n square.  

This is because a binary counter needs only logn bits to represent a string of length n.  And so we 

can construct our n x n square out of logn x n size rectangles, and maintain a tile complexity of 

O(logn).  Our binary supertiles described above will affix in our first stage to create long strings 

of supertiles of length 1 x h where h represents the total number of bits in the binary counter, 

where h ≤ logn.  We will then allow those strings to assemble into a rectangle of size h x m, 

where m ≤ n.  Because a binary counter terminates at a power of 2, to arrive at a length of 

precisely n, we must accumulate a series of rectangles whose total length is n.  The length of 

each rectangle in the series, and the total number of rectangles is determined by the binary 

representation of the number n.  In our figures and example, we consider an arbitrary number 45 
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set to n.  In this case, the binary representation is 101101.  For every 1 digit in the lth place of the 

binary sequence, we will construct a rectangle of length m, such that m = 2l. 

Introducing Geometry 

 A second modification that makes it possible to implement a staged tile assembly model 

with a stage complexity of O(1) is the use of novel geometry to enforce exact constructions.  

Recent research has confirmed the power of geometry in temperature 1 constructions, and in this 

case, the use of a simple geometry is essential to the performance of a supertile binary counter.  

A supertile is a construction involving multiple tiles that once combined function as a de facto 

single tile type in future interactions.  Essentially, as we construct n x n squares in this staged tile 

assembly model, we will be using supertiles whose total length can be defined as 1 unit, where n 

units have a total length n.  In other words, it is possible to create supertiles of an arbitrary size 

so that to achieve an n x n square we use n x n total supertiles.   

 The binary counter supertile consists of four tiles bonded so that the bottom two tiles 

represent a binary digit, 1 or 0.  The first, bottom left, or SW digit represents the actual binary 

digit for the supertile as part of a binary sequence.  The second, bottom right, or SE digit 

represents the next, or adjacent binary digit for the supertile that should attach to the right.  The 

top two tiles are used to enforce the proper bonding with the next supertile in the binary 

sequence.  In our supertiles there will generally be a single glue affixed to the North side of the 

top left, or NW tile, as shown in figure 1, responsible for affixing a single bit in the binary 

sequence to its next bit.   
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Figure 1: Binary Supertiles 
	  

 The geometry of each supertile is determined by the binary digits of that specific 

supertile.  If the digit on the SW tile, or bottom left tile, is a 1, then we affix an extra geometry, 

or restrictive tile on the bottom left side, or the West side of the SW tile.  If the digit on the SW 

tile is a 0, then we affix a restrictive tile on the top left side, or the West side of the NW tile.  

This geometry is reversed on the East side, with a restrictive tile affixed to the bottom right side, 

or East side of the SE tile, if the SE tile carries a 0 digit.  A restrictive tile is affixed to the top 

right side, or East side of the NE tile, if the SE tile carries a 1 digit.  All of this is shown in figure 

1.  The term ‘restrictive tile’ is a reminder that the purpose of the extra geometry is to restrict 

growth to the left or right of the tile except in the case of a binary digit match.  A supertile that 

calls for a 0 on the right side, must pair with a matching 0 supertile, for example. 

 By introducing stages, geometry, and applying a binary counter in our temperature 1 tile 

assembly model, we ensure a powerful enough tileset to construct n x n squares consistently with 



	   10	    
	  

a tiletype complexity of O(logn) and O(1) stages.  However, before we explore our specific 

tileset, we need to consider the obstacles our construction must overcome. 

Enforcing Error Free Constructions 

 We must ensure that whenever we expect two supertiles or two supertile strings to adhere 

adjacent to one another, no other supertile or supertile string can also adhere, thus disrupting the 

formation of the n x n square.  This often results in slight increases in tiletype and stage 

complexity to prevent these types of mismatch.   

Complete Coverage 

 It is important that in constructing n x n squares we ensure that our construction is 

complete, by which we mean that there are no gaps or spaces at any point in our square.  This 

requires at times extra filler tiles, as well as extra stages needed to ensure that these filler tiles 

interact predictably with the rest of the tile assembly model. 

Infinite Strings 

 Because we are implementing a tile assembly model at temperature 1, it is important to 

carefully consider how each tile will bond with the adjacent tiles, to ensure that infinite strings 

do not form and complicate or disrupt construction of the n x n square.  As one example, the 

binary strings, which represent a single bit construction in our h x n rectangles, will eventually be 

joined together into a single rectangle using top glues, a small supertile with East and West glues 

that attaches to the top of each binary string.  If we released top glues as complete supertiles into 

our solution, then before they even had a chance to attach to our binary strings, they might bond 

with one another, since there is no need to consider the overall strength of glue bonds in a 

temperature 1 system.  These bonded top glues might form infinite strings, or long unending 

lines of top glues that would disrupt and ruin our planned n x n square.  To account for infinite 
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strings in this one example, we introduce only half of our supertile in one stage, so it bonds with 

the binary strings, but not yet binding the binary strings to each other.  Only after spare top glues 

are washed away does the second part of the supertile attach to the binary strings, forcing them to 

self-assemble into rectangles without creating disruptive infinite strings. 

 While there are other considerations and obstacles to overcome in developing a specific 

tileset, these two concerns often require careful consideration of the exact order and design of 

each tiletype, and also each stage. 
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CHAPTER III 
 
 

RESULTS 
 
 

In this chapter we describe in detail how precisely we construct exact, complete n x n 

rectangles, beginning with the construction of key logn x n rectangles, while maintaining 

O(logn) tile complexity, without using more than a constant number of stages, O(1), as shown in 

table 1.  

	  

Table 1: Our Result 
	  

Most of the chapter will focus on the specific tile types needed to achieve this result, and 

will provide detailed instructions on how these tile types interact and assemble from supertiles 

into squares.  While simplicity is key to elegant and efficient algorithms, the complexity of a 

complete tile set reflects the challenge in overcoming obstacles to guarantee error-free 

constructions.  Special attention will be paid to how the design of a tile type helps ensure error-

free construction of our logn x n rectangles, and our final n x n squares.  
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Constructing logn x n Rectangles 

 To achieve our results efficiently, we construct our rectangles using a binary counter.  To 

implement the binary counter in our model, we create binary counter supertiles, as our primary 

tile type within our overall tile set.  A supertile is a construction composed of individual tiles that 

operates like a tile to facilitate the construction of still more complex structures. 

Binary Counter Supertiles 

 The purpose of our binary counter supertile is to create binary strings that we will use to 

construct various rectangles of size logm x m, such that the sum of the lengths of these rectangles 

is equal to n, allowing us to create a combined rectangle of size logn x n.  Our binary counter 

works through nondeterministic self assembly by allowing each bit that attaches to determine the 

outcome of the individual binary string.  Given sufficient time, statistically we should see 

sufficient copies of each individual binary string, such that entire binary counters can form.  The 

binary counter works generally by either ‘carrying’ a value, represented by the ‘10’ binary 

supertile, or not-carrying a value, represented by the three other binary supertile types, as shown 

in figure 2.  When the value is carried up to the maximum binary string height, the binary 

counter terminates.  There will be exactly 4(logn – 2) + 2 or 4logn – 6 tiletypes, because the first 

level, l0 will have only two tiletypes, a single carry binary supertile c0 and a single non-carry 

binary supertile nc0.  Additionally, the top level lh will have only stop supertiles, which are 

introduced below, since growth of the binary strings will be restricted to at most a height h, 

where h ≤ logn. 
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Figure 2: Binary Counter 
	  

Stop Supertiles 

 Our stop supertiles are designated Si, where i represents each level that requires a set of 

stop supertiles. The purpose of our stop supertiles is to restrict the growth of our binary strings so 

that we create a size logm x m rectangle for each mi, a 2l length rectangle representing a 1 bit in 

the binary sequence of n.  The levels that require a stop supertile set are shown in figure 3 for the 

example case n = 45.   
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Figure 3: Tiletypes For n = 45 
 

 The total stop supertiles needed to construct our rectangles and square have a tiletype 

complexity of no more than O(logn), and therefore these tiles allow us to maintain an overall 

tiletype complexity of no more than O(logn). Generally, a stop supertile set resembles a set of 

binary supertiles, including equivalent geometry and bit markings, as shown in figure 4.  

	  

Figure 4: Stop Supertiles 
	  



	   16	    
	  

However, growth beyond the stop supertile set is restricted to extension supertiles, introduced 

below.  Additionally, the ‘carry’ stop supertile has no East-face geometry, due to the fact that a 

special glue supertile will be used to connect this stop supertile to the adjacent specific extension 

supertile.  To be exact, each mi has a single ‘carry’ stop supertile that will connect to the 

corresponding mi – 1 specific extension supertile.  

 There will be at most 4logn – 5 stop supertiles, which is the case when n = 2i – 1, where i 

is any nonnegative integer.  There will be at least 4 stop supertiles, which is the case when n = 2i.  

In the binary representation of n, every bit set to 1 represents a level of our binary counter that 

will require its own rectangle, some li which will require 4 stop supertiles.  The exceptions are 

for the first bit, which will require only a single stop supertile, since this rectangle is a 1 x 1 

construction, and in the second bit, which will require only two stop supertiles, since this 

represents a 1 x 2 construction.  For our example n = 45, the binary representation of 101101 

means there will be four stop supertiles created for levels l2, l3, and l5, and one stop supertile 

created for level l0, for a total of 13 stop supertiles.  

Extension Supertiles 

 The purpose of the extension supertiles is to ensure that after all the rectangles of size 

logm x m are created, they extend to a constant height of h, or about logn, so that our final 

rectangle is a consistent size h x n, or logn x n.  There are two types of extension supertiles. 

 Specific Extension Supertiles.  Specific extension supertiles, designated sxi, are used to 

connect a length mi rectangle to a length mi + 1 rectangle, by extending the height of the first 

rectangle from logmi to logmi + 1, as shown in figure 3.  These extension supertiles must be 

specific to each mi rectangle to ensure that the rectangles attach in a predictable order to form 

perfect logn x n rectangles in our final construction.  Additionally, for every specific extension 
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supertile type, there is a twin supertile type that attaches to the right-most, or East-most binary 

supertile string, as shown in figure 5.  This binary supertile string represents the string of all 1 

bits, and can be considered the ‘carry’ binary supertile string.  While the addition of an entire 

twin set of extension supertiles seems like an added layer of complexity, it is essential to 

distinguishing the right-most or East side of each rectangle mi and is essential to completing our 

final logn x n rectangle.  There will be at most 2logn – 1 specific extension supertiles, where n = 

2i – 1, but in the case where n = 2i there will be no extension supertiles at all, because there will 

only be one rectangle in the series. 

 

	  

Figure 5: Stop and Extension Supertile Sets 
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 Generic Extension Supertiles. Generic extension supertiles, designated gxi, are used to 

extend a height logmi rectangle that has already been extended to height logmi + 1 by specific 

extension supertiles, to a final string height of about logn, or logmh.  These generic extension 

supertiles are the same for each rectangle m in our series.  Also, like the specific extension 

supertile, there is a twin generic extension supertile that attaches to the right-most or East-most 

binary supertile string in each rectangle mi, the ‘carry’ string.  There will be at most 2logn – 2 

generic extension supertiles, where n = 2i – 1, but in the case where n = 2i there will be no 

extension supertiles at all, because there will only be one rectangle in the series.  In total, 

therefore, the maximum extension supertiles will be 4logn – 5 and the minimum 0. 

 Both specific extension supertiles and generic extension supertiles, as described above, 

contain similar geometry.  To both prevent binary string mismatches, and also to ensure a 

complete rectangle and square, there is a geometry unique to extension supertiles, which consists 

of an all East-face geometry, and no geometry tiles on the West-face of each supertile, as shown 

in figure 5.  These supertiles, when added to the binary and stop supertiles will create our 

complete binary strings, shown in figure 6, which will ultimately connect to one another through 

complimentary geometry as well as through matching glue types.  
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Figure 6: Complete Binary Supertile Strings 
	  

Top Glue Supertile 

 To bind our binary supertile strings into rectangles, we will attach a pair of top glue 

supertile types to the North side, or top, of each level lh supertile, as shown in figure 7.   
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Figure 7: Assembled Supertile Strings 
	  

Supertiles at this level all have two North side glues, one meant to attach to a top left (West) glue 

supertile, designated TW, and one to a top right (East) glue supertile, designated TE.  The reason 

for two different glue supertile types, is that if we release them both at once, they might bond 

immediately into infinite strings, and float around or otherwise destroy our planned n x n 

squares.  Instead, by allowing either type to bond first to each binary supertile string, and then 

rinsing away the remaining glue supertiles, we avoid this problem. 

 Additionally, a third top glue supertile type (East-most), designated TE+, will be used 

specifically to assist in connecting all mi rectangles together into a single logn x n rectangle.  

This top glue supertile is a right (East) supertile type.  It is designed solely to attach to two types 

of level lh supertiles, the far-right, or East-most stop supertile for mh, and the East-most extension 

supertile for each mi, where i < h, whether specific or generic for each rectangle.  This third top 



	   21	    
	  

glue supertile type will be released in the second to last stage.  It is the absence of the third top 

glue supertile type prior to this stage that is as helpful as its eventual presence.  That is because 

with only two top glue supertile types, rectangles might adhere out of order.  In reality, this third 

top glue supertile type is not even essential to binding adjacent mi rectangles.  It is really just 

essential for creating a complete logn x n rectangle, and its glue properties can only help 

strengthen the overall rectangle. There are exactly 3 top glue supertile types, shown in figure 8. 

	  

Figure 8: Top Glue Supertiles 
	  

East Geometry Filler Tile 

 The East geometry filler tile, designated E, is used to guarantee that our final n x n square 

is complete.  The East geometry filler tile binds to the unused ‘teeth’ or restrictive geometry on 

the binary supertile string located on the East, or far-right side of each m rectangle, prior to the 

binding of an mi rectangle to rectangle mi + 1.  East geometry filler tiles are only needed for levels 

l where there are no stop supertiles.  In other words, in every level which is represented by a 0 

bit, as shown in figure 3.  This is for the specific case where a binary supertile is adjacent to an 

extension tile, and therefore there is a gap between the two, as shown in figure 9.  There will be 
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at most logn – 1 East geometry filler tiletypes, in the case where n = 2i.  In the specific case 

where n = 2i – 1, there will be no geometry filler tiles, because there are no 0 bit levels. 

	  

Figure 9: East and Glue Tiles 
	  

Glue Supertile 

 The glue supertile, designated G, is designed to connect every rectangle mi to the 

subsequent rectangle mi + 1.  Specifically, the glue supertile binds the far-right or East side stop 

supertile of rectangle mi + 1 to the far-left or West side specific extension supertile of rectangle mi, 

as shown in figure 9.  There is no restrictive geometry between these two supertiles, and so the 

glue supertile serves as both the restrictive geometry, preventing same-size rectangles from 

binding in the next stage, and also a binding supertile, adhering corresponding binary supertile 

strings from adjacent rectangles.  There is exactly one glue supertile type for each combination 

of mi and mi + 1, which is important because otherwise two mismatched rectangles might attach 
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adjacent to each other.  There are at most logn – 1 glue supertile types, in the case where n = 2i – 

1, and in the case where n = 2i there will be no glue supertiles. 

Final Geometry Filler Tiles 

 If all previous tiletypes are applied, we will have a logn x n size rectangle, with only a 

few ‘teeth’ or restrictive geometry, on either side of the rectangle, like a jagged edge.  To smooth 

this edge on either side requires adding small geometry filler tiles, on the left-most binary 

supertile string, or rather the bit sequence representing 0, and also on the right-most binary 

supertile string, or the bit sequence representing m1, located at the nth position in our logn x n 

size rectangle. 

 If we are ending our construction with a logn x n size rectangle, we can apply a final pair 

of Final geometry filler tiles, one East and one West, designated by FE and FW.  There would 

only need to be exactly two tiletypes.  As will be seen in the next chapter, the final geometry 

filler tile becomes a supertile as part of our plan to construct an n x n square. 

Stages Needed To Complete logn x n Rectangles 

 To create a complete logn x n rectangle requires a total of 6 stages, which achieves a 

stage complexity of O(1), while maintaining a tile complexity of O(logn), as shown in table 2.  In 

the first stage we mix all binary, stop, and extension supertiles, which form into binary strings.  

In the second and third stages we introduce West and East top glue supertiles, respectively, 

which allows our binary strings to form into logn x m rectangles.  In our fourth stage, we 

introduce the East geometry filler tiles, which prepare for stage five, the addition of glue 

supertiles, which bind our logn x m rectangle types into a single logn x n length rectangle.  To 

guarantee a complete rectangle, in stage six we introduce East-most top glues, and our Final 

geometry filler tiles.  The only stage that will change when we transition into the creation of our 
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final construction, n x n squares is stage six, when Final geometry filler tiles become supertiles 

that allow our logn x n rectangles to bind in parallel to a base rectangle, described below.

	  

Table 2: Stage and Tile Complexity for logn x n Rectangles 
	  

Constructing n x n Squares 

 Once we establish that we can create a logn x n rectangle with tile complexity O(logn) 

and stage complexity of O(1), we can approach the final construction of a complete n x n square.  

If we lay our logn height rectangles in parallel stacks, we can reach a near n x n shape using 

exactly n / logn rectangles.  However, without some means of binding these parallel rectangles in 

position, we cannot create an actual n x n rectangle.  The challenge then is to create an n length 

line with some type of binding point at intervals of logn, and to create this line without using 

more than O(1) additional stages, and no more than O(logn) tile types.  To do this, we actually 

construct a separate type of logn x n rectangle that consists of binary supertiles, like our previous 
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logn x n rectangle, but instead of creating binary supertile strings of size 1 x logn, we create 

binary supertile blocks of size logn x logn. 

Constructing logn x n Rectangles with logn x logn Supertile Blocks 

 To construct a base rectangle of size logn x n, using logn x logn supertile blocks, we 

begin with a binary supertile set needed to create a rectangle of length 2h, where h represents the 

largest possible bit in the binary sequence with logn bits.  In our example situation where n = 45, 

h = 5, and 2h = 32.  Since each binary supertile string will actually be of length logn then our 

rectangle if fully constructed would be of length 2hlogn, or in the case of 45, (32)5 or 160.  

Because the length of this new rectangle exceeds n, we can create a special terminal string that 

will attach and prevent the full construction of the binary sequence.   

 In the previous construction, we attached multiple, complete rectangles into a single 

rectangle.  Here, we cut short a rectangle to fit our purpose.  In this specific case, we will stop 

our construction after a number of supertile blocks equal to n / logn, which in this case of n = 45 

would be 9.  However, because the terminal string itself is a supertile, it is important to consider 

that one string as part of our length, so in effect we set n – 1 as our rectangle length.  In this 

specific case we will then only have 8 logn x logn size supertiles in our base rectangle, because n 

– 1 / logn = 8.  This also corresponds to the number of parallel rectangles that will ultimately 

attach to form our final n x n square.  In total we will have one base rectangle and 8 parallel 

rectangles attached to the base in our complete n x n square, for the example case of n = 45. 

 Binary Supertiles.  First, we consider our binary supertiles, which is the same exact tile 

set used in the previous construction.  In this case, we do not need stop supertiles, or extension 

supertiles, because we will have only one partial rectangle, instead of a series of connected 

rectangles.  However, in addition to our binary supertile set, we will have an East extension 
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supertile, which simply extends each binary supertile string to the right, or East by logn – 1 

supertiles. 

 East Extension Supertiles.  East extension supertiles, designated exi, have exactly 

2(logn – 1) tiletypes.  At each position in the extension sequence, there is a 0 bit extension 

tiletype, and a 1 bit extension tiletype, shown in figure 10.  The East extension supertiles will 

bind directly to the binary supertile strings, and to each other in sequence, as shown in figure 11.  

Entire supertile blocks will still use top glues to bind to one another. 

	  

Figure 10: Extension Supertiles 
 

	  

Figure 11: logn x logn Supertile Blocks 
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 Top Glues.  We will also have a set of top glues, similar to our previous construction.  

There will be exactly three top glue tiletypes.  As before, we will release only one, this time 

right-side, or East top glue, allowing it to bond first, before releasing other top glues.  There is a 

second West top glue, and a third top glue specific to the terminating supertile string.  Key to the 

entire rectangle is the terminating supertile string, which is an engineered stop supertile string 

that restricts growth beyond length n in the rectangle. 

 Terminating Supertile String.  To create a terminating supertile string requires exactly 

logn terminating supertile types.  The terminating supertile string will be attached to the right 

binary supertile string because it will bond with a distinct terminal top glue, designated by TT, 

released after the East top glue, so that it attaches before any other binary supertile string can 

possibly attach, as shown in figure 12.  

	  

Figure 12: Assembled Supertile Block with Terminating String 
	  

When the West top glues are released, no binary supertile strings will be able to attach to the 

main construction past the terminating supertile string.  Because there will be a remainder length 
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(n mod logn) – 1 we will also introduce a special East extension supertile to ensure our square is 

complete and measures n x n.  The special East extension supertile can attach directly to the 

terminating supertile string.  There will be at most logn – 1 East extension supertile types.  

Lastly, we release final geometry filler tiles, which fill spaces between the gaps in the ‘teeth’ or 

restrictive geometry for the left-most, or West-most binary supertile block, representing the 

binary string for the value 0.  There is exactly one type of filler tile in this construction. 

 Stages Needed to Complete New logn x n Rectangles.  With these tiletypes, we can 

create a second type of logn x n rectangle, which will serve as the base, and binding site for our 

parallel construction of logn x n rectangles as described previously.  The stages needed to create 

this second logn x n rectangle are shown in table 3.  In the first stage we introduce our binary and 

terminating supertiles, allowing these supertile strings to construct in parallel.  In the second 

stage, we turn our binary supertile strings into logn x logn blocks by introducing the East 

extension supertiles.  In the third and fourth stages, we introduce East top glue supertiles, and 

terminal top glue supertiles respectively, allowing the binary and terminating supertile strings to 

attach at the string that represents the value n – 1 / logn.  In the fifth stage, we introduce West top 

glue supertiles and East extension supertiles, allowing the rest of the binary strings to attach into 

a single rectangle, and extending that rectangle so the final measure is logn x n.  Lastly, in stage 

six we add a final geometry filler tile which will fill in the gaps on the left-most, or West side of 

our rectangle.  None of these stages change in the context of constructing an n x n square, except 

that some of the supertiles mentioned have glues which permit the earlier logn x n rectangles to 

attach at intervals of logn along our base rectangle length. 



	   29	    
	  

	  

Table 3: Complexity for Rectangles using logn x logn Blocks 
	  

Finishing the n x n Square 

 To finish our square of size n x n then, we need only add a few small adjustments.  In our 

original rectangle, instead of simply having East filler tiles, we will have an entire East filler 

supertile, that includes the glues necessary to bind the original rectangle to the ‘top’ of the binary 

supertile string in the second rectangle, constructed out of size logn x logn supertiles. Both types 

of logn x n rectangles, because they will have different orientation (N, E, S, W), can be 

constructed in parallel stages, so long as we ensure there is no prematurely binding.  Specifically, 

the final n x n square requires only seven total stages, because stages 1—6 can be carried out in 

parallel for both rectangle types. The last stage, stage seven, completes our n x n square by 

extending the rest of the way to n after considering the amount n mod logn.  We can create a 

final filler tile that attaches in a sequence equal to n mod logn and therefore has no more than 

logn tiletypes.  The maximum is logn – 1 and the minimum 0.  In this way we use two types of 
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rectangles, each with stage complexity of O(1) and tile complexity of no more than O(logn), to 

construct an n x n rectangle also with stage complexity of O(1) and tile complexity of O(logn).
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CHAPTER IV 

CONCLUSIONS AND FUTURE WORK 

Improvements to the Modified Staged Tile Assembly Model 

 First, it is important to consider areas where our modified staged tile assembly model can 

be improved to create more stable structures.  We create a complete, exact n x n square in O(1) 

stages with a tile complexity of O(logn).  Is it possible to create a fully-connected square of the 

same dimensions without a reduction in tile complexity and stage complexity?  Full connectivity 

means that each tile in our construction is bonded with each adjacent tile.  In our current model, 

we simply ensure that each tile is reliably bonded to at least one adjacent tile.  In a real 

laboratory, without additional bonding between tiles, our construction might shift and lead to 

unforeseen errors.  Thus a fully connected model might be a significant improvement. 

 Second, while the modified staged tile assembly model assumes that partial 

constructions, or incomplete components at each stage that do not fully assembly into the desired 

construction, are washed away, a more robust model might ensure there were no partial 

constructions.  While in a theoretical model, we can assume partial constructions are ‘washed’ 

away, in a real laboratory that process might both prove problematic, as well as costly in terms of 

effort and resources.  It is actually an open-question to determine whether or not it is possible to 

construct a modified staged tile assembly model that is free of partial constructions, that still 

adheres to our tile complexity constraints of O(1) stages and O(logn) tiletypes.  However, even 

without a model that is free of all partial constructions, improvements could be made.  The 

second type of logn x n rectangle, constructed out of logn x logn blocks, terminates at a 
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relatively early stage, in this case at n = 45 for a rectangle that if fully assembled would achieve a 

length of n = 160.  That means the ‘partial’ construction in this circumstance is larger than the 

terminal construction.  By metaphorical comparison, that would be the equivalent of throwing 

away 75 percent of a chicken to create a chicken nugget.  This could easily be improved by 

allowing the bit size of the logn x n rectangle to vary, instead of automatically setting it to h, 

which is the largest bit in the binary representation of n, such that h ≤ logn.  In the example of n 

= 45, we could use a 16 bit binary counter instead to assemble into a (16)logn length rectangle, 

for a total length of 80, reducing the overall construction by 50 percent, and reducing the waste, 

as represented by the washed away partial construction, by 67 percent. 

 Lastly, in order to solve a problem in creating an efficient and algorithmically 

inexpensive way to bind each original logn x n rectangle in parallel, we constructed an entirely 

different form of logn x n rectangle, constructed out of supertiles that measure logn x logn.  It is 

possible that in its simplicity, this problem-solving rectangle might actually be more efficient 

than the original rectangles we created.  We could easily create an n x n square using only the 

second type of rectangle.  In searching for a solution to a problem within our model, we 

identified a very different model entirely, one that terminates a single binary counter, instead of 

appending multiple rectangles into a larger rectangle of exactly length n.  Posing the question, 

which rectangle is more efficient, would involve evaluating tradeoffs between tiletype 

complexity—the second rectangle is less complex—versus inefficiency through increased partial 

constructions.  To compare, the first rectangle has no ‘waste’ or partial constructions, except for 

those that simply do not have enough time to assemble into terminal shapes.      
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Determining Comparable Costs for Various Tile Assembly Models 

 In the original tile assembly model (TAM) researchers quickly advanced toward the use 

of temperature 2 systems, because of the improvement in tile complexity, from an original 

temperature 1 tile complexity of O(n2).  However, results such as the original staged tile 

assembly model (sTAM) and our modified staged tile assembly model, can achieve constructions 

with much improved tile complexity, including the original result of O(1) tile complexity, using 

O(logn) stages, and our new result of O(logn) tile complexity with O(1) stages.  Each of these 

results presents options for researchers to consider when determining which tile assembly model 

is most adaptable to real-world conditions.  

 Furthermore, as researchers in biological laboratories begin implementing tile assembly 

systems under real conditions, it is clear that tile complexity is not the only real measure of 

efficiency and reliability.  One area of future research that is key is to find some measure of 

determining a comparable cost in terms of real resources between one tile assembly model and 

another.  What is lost in terms of cost and reliability in adopting a temperature 2 tile assembly 

model over a temperature 1 tile assembly model?  How does the tradeoff in improved tile 

complexity for temperature 2 systems offset these costs?  Is a staged tile assembly model with 

O(logn) tile complexity cheaper to use for constructions, and potentially more reliable, than 

comparable temperature 2 models? 

Encouraging Ethical Considerations for DNA Self-Assembly Research 

 While writers in the popular media are quick to pose questions of ethical consideration 

when writing about advanced science generally, it does not seem to be a practice currently en 

vogue or encouraged by computer science researchers in the field of DNA self-assembly.  In my 

literature review, I came across not one single paper that addresses potential areas of ethical 
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concern with respect to research involving the manipulation of DNA, and specifically the power 

of DNA, once manipulated and configured into real-world Wang tiles, to self-assemble into 

nanoscale objects.  Perhaps because algorithmic design and analysis is an abstract science, 

computer science researchers in the field of DNA self-assembly do not seem to consider in their 

works the potential impacts on humanity, both short-term, or long-term, from the actual 

construction of nanoscale circuits or, as we are seeing already, primitive nanoscale computers. 

 It is probable, that as the field of DNA Self-Assembly moves from a more theoretical 

study, lodged in the computer sciences, to a study of practical applications, lodged in the 

biological sciences, we will see a greater level of inquiry dedicated to determining the exact ends 

of the research, and whether those ends are ethically just.  I know this may be unfamiliar territory 

for researchers, but without knowledgeable judgment of ethical questions by researchers, those 

questions will necessarily be left to political, or legal actors, whose familiarity with the actual 

science may be significantly less.  In short, if we do not judge the ethical consequences of our 

own work, it may be judged by those who are far less informed, yet we may still bear the burden 

of those judgments in the form of potential research and funding restrictions.  For these reasons, I 

fully encourage the development of research lines that expend energy evaluating the ethical 

considerations for DNA Self-Assembly, with vigor equal to those who study, for example, the 

robustness of particular DNA Self-Assembly models.  While there are leaders in various 

subfields of DNA Self-Assembly, there has yet to emerge a leader in the area of Ethics of DNA 

Self-Assembly, and I hope that one day this niche is filled.   
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