4 research outputs found

    Tightly Secure IBE under Constant-size Master Public Key

    Get PDF
    International audienceChen and Wee [CRYPTO, 2013] proposed the first almost tightly and adaptively secure IBE in the standard model and left two open problems which called for a tightly secure IBE with (1) constant-size master public key and/or (2) constant security loss. In this paper, we propose an IBE scheme with constant-size master public key and tighter security reduction. This (partially) solves Chen and Wee's first open problem and makes progress on the second one. Technically, our IBE scheme is built based on Wee's petit IBE scheme [TCC, 2016] in the composite-order bilinear group whose order is product of four primes. The sizes of master public key, ciphertexts, and secret keys are not only constant but also nearly optimal as Wee's petit IBE. We can prove its adaptive security in the multi-instance, multi-ciphertext setting [PKC, 2015] based on the decisional subgroup assumption and a subgroup variant of DBDH assumption. The security loss is O(log q) where q is the upper bound of the total number of secret keys and challenge ciphertexts revealed to adversary in each single IBE instance. It's much smaller than those for all known adaptively secure IBE schemes in a concrete sense

    Tightly Secure IBE under Constant-size Master Public Key

    No full text
    International audienceChen and Wee [CRYPTO, 2013] proposed the first almost tightly and adaptively secure IBE in the standard model and left two open problems which called for a tightly secure IBE with (1) constant-size master public key and/or (2) constant security loss. In this paper, we propose an IBE scheme with constant-size master public key and tighter security reduction. This (partially) solves Chen and Wee's first open problem and makes progress on the second one. Technically, our IBE scheme is built based on Wee's petit IBE scheme [TCC, 2016] in the composite-order bilinear group whose order is product of four primes. The sizes of master public key, ciphertexts, and secret keys are not only constant but also nearly optimal as Wee's petit IBE. We can prove its adaptive security in the multi-instance, multi-ciphertext setting [PKC, 2015] based on the decisional subgroup assumption and a subgroup variant of DBDH assumption. The security loss is O(log q) where q is the upper bound of the total number of secret keys and challenge ciphertexts revealed to adversary in each single IBE instance. It's much smaller than those for all known adaptively secure IBE schemes in a concrete sense

    FABEO: Fast Attribute-Based Encryption with Optimal Security

    Get PDF
    Attribute-based encryption (ABE) enables fine-grained access control on encrypted data and has a large number of practical applications. This paper presents FABEO: faster pairing-based ciphertext-policy and key-policy ABE schemes that support expressive policies and put no restriction on policy type or attributes, and the first to achieve optimal, adaptive security with multiple challenge ciphertexts. We implement our schemes and demonstrate that they perform better than the state-of-the-art (Bethencourt et al. S&P 2007, Agrawal et al., CCS 2017 and Ambrona et al., CCS 2017) on all parameters of practical interest

    Improvements and New Constructions of Digital Signatures

    Get PDF
    Ein digitales Signaturverfahren, oft auch nur digitale Signatur genannt, ist ein wichtiger und nicht mehr wegzudenkender Baustein in der Kryptographie. Es stellt das digitale Äquivalent zur klassischen handschriftlichen Signatur dar und liefert darüber hinaus noch weitere wünschenswerte Eigenschaften. Mit solch einem Verfahren kann man einen öffentlichen und einen geheimen Schlüssel erzeugen. Der geheime Schlüssel dient zur Erstellung von Signaturen zu beliebigen Nachrichten. Diese können mit Hilfe des öffentlichen Schlüssels von jedem überprüft und somit verifiziert werden. Desweiteren fordert man, dass das Verfahren "sicher" sein soll. Dazu gibt es in der Literatur viele verschiedene Begriffe und Definitionen, je nachdem welche konkreten Vorstellungen beziehungsweise Anwendungsgebiete man hat. Vereinfacht gesagt, sollte es für einen Angreifer ohne Kenntnis des geheimen Schlüssels nicht möglich sein eine gültige Signatur zu einer beliebigen Nachricht zu fälschen. Ein sicheres Signaturverfahren kann somit verwendet werden um die folgenden Ziele zu realisieren: - Authentizität: Jeder Empfänger kann überprüfen, ob die Nachricht von einem bestimmten Absender kommt. - Integrität der Nachricht: Jeder Empfänger kann feststellen, ob die Nachricht bei der Übertragung verändert wurde. - Nicht-Abstreitbarkeit: Der Absender kann nicht abstreiten die Signatur erstellt zu haben. Damit ist der Einsatz von digitalen Signaturen für viele Anwendungen in der Praxis sehr wichtig. Überall da, wo es wichtig ist die Authentizität und Integrität einer Nachricht sicherzustellen, wie beim elektronischen Zahlungsverkehr, Softwareupdates oder digitalen Zertifikaten im Internet, kommen digitale Signaturen zum Einsatz. Aber auch für die kryptographische Theorie sind digitale Signaturen ein unverzichtbares Hilfsmittel. Sie ermöglichen zum Beispiel die Konstruktion von stark sicheren Verschlüsselungsverfahren. Eigener Beitrag: Wie bereits erwähnt gibt es unterschiedliche Sicherheitsbegriffe im Rahmen von digitalen Signaturen. Ein Standardbegriff von Sicherheit, der eine recht starke Form von Sicherheit beschreibt, wird in dieser Arbeit näher betrachtet. Die Konstruktion von Verfahren, die diese Form der Sicherheit erfüllen, ist ein vielschichtiges Forschungsthema. Dazu existieren unterschiedliche Strategien in unterschiedlichen Modellen. In dieser Arbeit konzentrieren wir uns daher auf folgende Punkte. - Ausgehend von vergleichsweise realistischen Annahmen konstruieren wir ein stark sicheres Signaturverfahren im sogenannten Standardmodell, welches das realistischste Modell für Sicherheitsbeweise darstellt. Unser Verfahren ist das bis dahin effizienteste Verfahren in seiner Kategorie. Es erstellt sehr kurze Signaturen und verwendet kurze Schlüssel, beides unverzichtbar für die Praxis. - Wir verbessern die Qualität eines Sicherheitsbeweises von einem verwandten Baustein, der identitätsbasierten Verschlüsselung. Dies hat unter anderem Auswirkung auf dessen Effizienz bezüglich der empfohlenen Schlüssellängen für den sicheren Einsatz in der Praxis. Da jedes identitätsbasierte Verschlüsselungsverfahren generisch in ein digitales Signaturverfahren umgewandelt werden kann ist dies auch im Kontext digitaler Signaturen interessant. - Wir betrachten Varianten von digitalen Signaturen mit zusätzlichen Eigenschaften, sogenannte aggregierbare Signaturverfahren. Diese ermöglichen es mehrere Signaturen effizient zu einer zusammenzufassen und dabei trotzdem alle zugehörigen verschiedenen Nachrichten zu verifizieren. Wir geben eine neue Konstruktion von solch einem aggregierbaren Signaturverfahren an, bei der das Verfahren eine Liste aller korrekt signierten Nachrichten in einer aggregierten Signatur ausgibt anstatt, wie bisher üblich, nur gültig oder ungültig. Wenn eine aggregierte Signatur aus vielen Einzelsignaturen besteht wird somit das erneute Berechnen und eventuell erneute Senden hinfällig und dadurch der Aufwand erheblich reduziert
    corecore