418 research outputs found

    Upper Bound of Real Log Canonical Threshold of Tensor Decomposition and its Application to Bayesian Inference

    Full text link
    Tensor decomposition is now being used for data analysis, information compression, and knowledge recovery. However, the mathematical property of tensor decomposition is not yet fully clarified because it is one of singular learning machines. In this paper, we give the upper bound of its real log canonical threshold (RLCT) of the tensor decomposition by using an algebraic geometrical method and derive its Bayesian generalization error theoretically. We also give considerations about its mathematical property through numerical experiments

    Patterns of Scalable Bayesian Inference

    Full text link
    Datasets are growing not just in size but in complexity, creating a demand for rich models and quantification of uncertainty. Bayesian methods are an excellent fit for this demand, but scaling Bayesian inference is a challenge. In response to this challenge, there has been considerable recent work based on varying assumptions about model structure, underlying computational resources, and the importance of asymptotic correctness. As a result, there is a zoo of ideas with few clear overarching principles. In this paper, we seek to identify unifying principles, patterns, and intuitions for scaling Bayesian inference. We review existing work on utilizing modern computing resources with both MCMC and variational approximation techniques. From this taxonomy of ideas, we characterize the general principles that have proven successful for designing scalable inference procedures and comment on the path forward

    Gauss quadrature for matrix inverse forms with applications

    Get PDF
    We present a framework for accelerating a spectrum of machine learning algorithms that require computation of bilinear inverse forms u[superscript T] A[superscript −1]u, where A is a positive definite matrix and u a given vector. Our framework is built on Gauss-type quadrature and easily scales to large, sparse matrices. Further, it allows retrospective computation of lower and upper bounds on u[superscript T] > A[superscript −1]u, which in turn accelerates several algorithms. We prove that these bounds tighten iteratively and converge at a linear (geometric) rate. To our knowledge, ours is the first work to demonstrate these key properties of Gauss-type quadrature, which is a classical and deeply studied topic. We illustrate empirical consequences of our results by using quadrature to accelerate machine learning tasks involving determinantal point processes and submodular optimization, and observe tremendous speedups in several instances.Google (Research Award)National Science Foundation (U.S.) (CAREER Award 1553284
    • …
    corecore