
Gauss quadrature for matrix inverse forms
with applications

Chengtao Li ctli@mit.edu

Suvrit Sra suvrit@mit.edu

Stefanie Jegelka stefje@csail.mit.edu

Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

We present a framework for accelerating a spectrum of machine learning algorithms that require
computation of bilinear inverse forms u>A−1u, where A is a positive definite matrix and u a given
vector. Our framework is built on Gauss-type quadrature and easily scales to large, sparse matri-
ces. Further, it allows retrospective computation of lower and upper bounds on u>A−1u, which in
turn accelerates several algorithms. We prove that these bounds tighten iteratively and converge at
a linear (geometric) rate. To our knowledge, ours is the first work to demonstrate these key proper-
ties of Gauss-type quadrature, which is a classical and deeply studied topic. We illustrate empirical
consequences of our results by using quadrature to accelerate machine learning tasks involving deter-
minantal point processes and submodular optimization, and observe tremendous speedups in several
instances.

1 Introduction

Symmetric positive definite matrices arise in many areas in a variety of guises: covariances, kernels,
graph Laplacians, or otherwise. A basic computation with such matrices is evaluation of the bilinear
form uT f (A)v, where f is a matrix function and u, v are given vectors. If f (A) = A−1, we speak
of computing a bilinear inverse form (BIF) uT A−1v. For example, with u=v=ei (ith canonical vector)
uT f (A)v = (A−1)ii is the ith diagonal entry of the inverse.

In this paper, we are interested in efficiently computing BIFs, primarily due to their importance
in several machine learning contexts, e.g., evaluation of Gaussian density at a point, the Woodbury
matrix inversion lemma, implementation of MCMC samplers for Determinantal Point Processes (Dpp),
computation of graph centrality measures, and greedy submodular maximization (see Section 2).

When A is large, it is preferable to compute uT A−1v iteratively rather than to first compute A−1

(using Cholesky) at a cost of O(N3) operations. One could think of using conjugate gradients to
solve Ax = v approximately, and then obtain uT A−1v = uTx. But several applications require precise
bounds on numerical estimates to u>A−1v (e.g., in MCMC based Dpp samplers such bounds help
decide whether to accept or reject a transition in each iteration–see Section 5.1), which necessitates a
more finessed approach.

Gauss quadrature is one such approach. Originally proposed in [23] for approximating integrals,
Gauss- and Gauss-type quadrature (i.e., Gauss-Lobatto [43] and Gauss-Radau [51] quadrature) have since
found application to bilinear forms including computation of uT A−1v [4]. Bai et al. also show that
Gauss and (right) Gauss-Radau quadrature yield lower bounds, while Gauss-Lobatto and (left) Gauss-
Radau yield upper bounds on the BIF uT A−1v.

However, despite its long history and voluminous existing work (see e.g., [29]), our understanding
of Gauss-type quadrature for matrix problems is far from complete. For instance, it is not known
whether the bounds on BIFs improve with more quadrature iterations; nor is it known how the bounds
obtained from Gauss, Gauss-Radau and Gauss-Lobatto quadrature compare with each other. We do not
even know how fast the iterates of Gauss-Radau or Gauss-Lobatto quadrature converge.

Contributions. We address all the aforementioned problems and make the following main contri-
butions:

1

ar
X

iv
:1

51
2.

01
90

4v
2

 [
st

at
.M

L
]

 2
8

M
ay

 2
01

6
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/145230719?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

– We show that the lower and upper bounds generated by Gauss-type quadrature monotonically ap-
proach the target value (Theorems 4 and 6; Corr. 7). Furthermore, we show that for the same
number of iterations, Gauss-Radau quadrature yields bounds superior to those given by Gauss or
Gauss-Lobatto, but somewhat surprisingly all three share the same convergence rate.

– We prove linear convergence rates for Gauss-Radau and Gauss-Lobatto explicitly (Theorems 5 and
8; Corr. 9).

– We demonstrate implications of our results for two tasks: (i) scalable Markov chain sampling from
a Dpp; and (ii) running a greedy algorithm for submodular optimization. In these applications,
quadrature accelerates computations, and the bounds aid early stopping.

Indeed, on large-scale sparse problems our methods lead to even several orders of magnitude in
speedup.

Related Work. There exist a number of methods for efficiently approximating matrix bilinear forms.
Brezinski [12] and Brezinski et al. [13] use extrapolation of matrix moments and interpolation to esti-
mate the 2-norm error of linear systems and the trace of the matrix inverse. Fika et al. [20] extend the
extrapolation method to BIFs and show that the derived one-term and two-term approximations coin-
cide with Gauss quadrature, hence providing lower bounds. Further generalizations address x∗ f (A)y
for a Hermitian matrix A [19]. In addition, other methods exist for estimating trace of a matrix func-
tion [3, 13, 18] or diagonal elements of matrix inverse [5, 60].

Many of these methods may be applied to computing BIFs. But they do not provide intervals
bounding the target value, just approximations. Thus, a black-box use of these methods may change
the execution of an algorithm whose decisions (e.g., whether to transit in a Markov Chain) rely on the
BIF value to be within a specific interval. Such changes can break the correctness of the algorithm.

Our framework, in contrast, yields iteratively tighter lower and upper bounds (Section 4), so the
algorithm is guaranteed to make correct decisions (Section 5).

2 Motivating Applications

BIFs are important to numerous problems. We recount below several notable examples: in all cases,
efficient computation of bounds on BIFs is key to making the algorithms practical.

Determinantal Point Processes. A determinantal point process (Dpp) is a distribution over subsets
of a set Y (|Y| = N). In its L-ensemble form, a Dpp uses a positive semidefinite kernel L ∈ RN×N , and
to a set Y ⊆ Y assigns probability P(Y) ∝ det(LY) where LY is the submatrix of L indexed by entries
in Y. If we restrict to |Y| = k, we obtain a k-Dpp. Dpp’s are widely used in machine learning, see e.g.,
the survey [36].

Exact sampling from a (k-)Dpp requires eigendecomposition of L [33], which is prohibitive. For
large N, Metropolis Hastings (MH) or Gibbs sampling are preferred and state-of-the-art. Therein the
core task is to compute transition probabilities – an expression involving BIFs – which are compared
with a random scalar threshold.

For MH [1, 7], the transition probabilities from a current subset (state) Y to Y′ are min{1, Lu,u −
Lu,Y L−1

Y LY,u} for Y′ = Y ∪ {u}; and min{1, Lu,u− Lu,Y′L
−1
Y′ LY′ ,u} for Y′ = Y\{u}. In a k-Dpp, the moves

are swaps with transition probabilities min
{

1,
Lu,u−Lu,Y′ L

−1
Y′ LY′ ,u

Lv,v−Lv,Y′ L
−1
Y′ LY′ ,v

}
for replacing v ∈ Y by u /∈ Y (and

Y′ = Y\{v}). We illustrate this application in greater detail in Section 5.1.
Dpps are also useful for (repulsive) priors in Bayesian models [37, 53]. Inference for such latent

variable models uses Gibbs sampling, which again involves BIFs.
Submodular optimization, Sensing. Algorithms for maximizing submodular functions can equally

benefit from efficient BIF bounds. Given a positive definite matrix K ∈ RN×N , the set function F(S) =
log det(KS) is submodular: for all S ⊆ T ⊆ [N] and i ∈ [N] \ T, it holds that F(S ∪ {i}) − F(S) ≥
F(T ∪ {i})− F(T).

2

Finding the set S∗ ⊆ [N] that maximizes F(S) is a key task for MAP inference with Dpps [25],
matrix approximations by column selection [11, 59] and sensing Krause et al. [35]. For the latter,
we model spatial phenomena (temperature, pollution) via Gaussian Processes and select locations to
maximize the joint entropy F1(S) = H(XS) = log det(KS) + const of the observed variables, or the
mutual information F2(S) = I(XS; X[N]\S) between observed and unobserved variables.

Greedy algorithms for maximizing monotone [49] or non-monotone [14] submodular functions rely
on marginal gains of the form

F1(S ∪ {i})− F1(S) = log(Ki − KiSK−1
S KSi);

F1(T \ {i})− F1(T) = − log(Ki − KiUK−1
U KUi);

F2(S ∪ {i})− F2(S) = log Ki−KiSK−1
S KSi

Ki−KiS̄K−1
S̄ KS̄i

for U = T\{i} and S̄ = [N]\S. The algorithms compare those gains to a random threshold, or find an
item with the largest gain. In both cases, efficient BIF bounds offer speedups. They can be combined
with lazy [47] and stochastic greedy algorithms [48].

Network Analysis, Centrality. When analyzing relationships and information flows between con-
nected entities in a network, such as people, organizations, computers, smart hardwares, etc. [2, 9, 16,
17, 40, 54], an important question is to measure popularity, centrality, or importance of a node.

Several existing popularity measures can be expressed as the solution to a large-scale linear system.
For example, PageRank [50] is the solution to (I − (1− α)A>)x = α1/N, and Bonacich centrality [10] is
the solution to (I − αA)x = 1, where A is the adjacency matrix. When computing local estimates, i.e.,
only a few entries of x, we obtain exactly the task of computing BIFs [39, 61]. Moreover, we may only
need local estimates to an accuracy sufficient for determining which entry is larger, a setting where our
quadrature based bounds on BIFs will be useful.

Scientific Computing. In computational physics BIFs are used for estimating selected entries of
the inverse of a large sparse matrix. More generally, BIFs can help in estimating the trace of the
inverse, a computational substep in lattice Quantum Chromodynamics [15, 22], some signal processing
tasks [31], and in Gaussian Process (GP) Regression [52], e.g., for estimating variances. In numerical
linear algebra, BIFs are used in rational approximations [57], evaluation of Green’s function [21], and
selective inversion of sparse matrices [39, 41, 42]. A notable use is the design of preconditioners [8] and
uncertainty quantification [6].

Benefiting from fast iterative bounds. Many of the above examples use BIFs to rank values, to
identify the largest value or compare them to a scalar or to each other. In such cases, we first compute
fast, crude lower and upper bounds on a BIF, refining iteratively, just as far as needed to determine the
comparison. Figure 1 in Section 4.4 illustrates the evolution of these bounds, and Section 5 explains
details.

3 Background on Gauss Quadrature

For convenience, we begin by recalling key aspects of Gauss quadrature,1 as applied to computing
u> f (A)v, for an N × N symmetric positive definite matrix A that has simple eigenvalues, arbitrary
vectors u, v, and a matrix function f . For a more detailed account of the relevant background on
Gauss-type quadratures please refer to Appendix A, or [29].

It suffices to consider u> f (A)u thanks to the identity

u> f (A)v = 1
4 (u + v)> f (A)(u + v)− 1

4 (u− v)> f (A)(u− v).

1The summary in this section is derived from various sources: [4, 24, 29]. Experts can skim this section for collecting our
notation before moving onto Section 4, which contains our new results.

3

Let A = Q>ΛQ be the eigendecomposition of A where Q is orthonormal. Letting ũ = Qu, we then
have

u> f (A)u = ũ> f (Λ)ũ = ∑N
i=1 f (λi)ũ2

i .

Toward computing uT f (A)u, a key conceptual step is to write the above sum as the Riemann-Stieltjes
integral

I[f] := u> f (A)u =
∫ λmax

λmin

f (λ)dα(λ), (3.1)

where λmin ∈ (0, λ1), λmax > λN , and α(λ) is piecewise constant measure defined by

α(λ) :=

0, λ < λ1,
∑k

j=1 ũ2
j , λk ≤ λ < λk+1, k < N,

∑N
j=1 ũ2

j , λN ≤ λ.

Our task now reduces to approximating the integral (3.1), for which we invoke the powerful idea of
Gauss-type quadratures [23, 24, 43, 51]. We rewrite the integral (3.1) as

I[f] := Qn + Rn = ∑n
i=1 ωi f (θi) + ∑m

i=1 νi f (τi) + Rn[f], (3.2)

where Qn denotes the nth degree approximation and Rn denotes the remainder term. In represen-
tation (3.2) the weights {ωi}n

i=1, {νi}m
i=1, and quadrature nodes {θi}n

i=1 are unknown, while the values
{τi}m

i=1 are prescribed and lie outside the interval of integration (λmin, λmax).
Different choices of these parameters yield different quadrature rules: m = 0 gives Gauss quadra-

ture [23]; m = 1 with τ1 = λmin (τ1 = λmax) gives left (right) Gauss-Radau quadrature [51]; m = 2
with τ1 = λmin and τ2 = λmax yields Gauss-Lobatto quadrature [43]; while for general m we obtain
Gauss-Christoffel quadrature [24].

The weights {ωi}n
i=1, {νi}m

i=1 and nodes {θi}n
i=1 are chosen such that if f is a polynomial of degree

less than 2n+m− 1, then the interpolation I[f] = Qn is exact. For Gauss quadrature, we can recursively
build the Jacobi matrix

Jn =

α1 β1
β1 α2 β2

β2
. . .

. . .
. . . αn−1 βn−1

βn−1 αn

, (3.3)

and obtain from its spectrum the desired weights and nodes. Theorem 1 makes this more precise.

Theorem 1. [30, 62] The eigenvalues of Jn form the nodes {θi}n
i=1 of Gauss quadrature; the weights {ωi}n

i=1
are given by the squares of the first components of the eigenvectors of Jn.

If Jn has the eigendecomposition P>n ΓPn, then for Gauss quadrature Thm. 1 yields

Qn = ∑n
i=1 ωi f (θi) = e>1 P>n f (Γ)Pne1 = e>1 f (Jn)e1. (3.4)

Given A and u, our task is to compute Qn and the Jacobi matrix Jn. For BIFs, we have that f (Jn) = J−1
n ,

so (3.4) becomes Qn = eT
1 J−1

n e1, which can be computed recursively using the Lanczos algorithm [38].
For Gauss-Radau and Gauss-Lobatto quadrature we can compute modified versions of Jacobi matrices
Jlr
n (for left Gauss-Radau), Jrr

n (for right Gauss-Radau) and Jlo
n (for Gauss-Lobatto) based on Jn. The

corresponding nodes and weights, and thus the approximation of Gauss-Radau and Gauss-Lobatto
quadratures, are then obtained from these modified Jacobi matrices, similar to Gauss quadrature.
Aggregating all these computations yields an algorithm that iteratively obtains bounds on uT A−1u.
The combined procedure, Gauss Quadrature Lanczos (GQL) [28], is summarily presented as Algorithm 1.
The complete algorithm may be found in Appendix A.

4

Algorithm 1 Gauss Quadrature Lanczos (GQL)
Input: Matrix A, vector u; lower and upper bounds λmin and λmax on the spectrum of A
Output: (gi, grr

i , glr
i , glo

i): Gauss, right Gauss-Radau, left Gauss-Radau, and Gauss-Lobatto quadrature estimates
for each i
Initialize: u0 = u/‖u‖, g1 = ‖u‖/u>0 Au0, i = 2
for i = 1 to N do

Update Ji using a Lanczos iteration
Solve for the modified Jacobi matrices Jlr

i , Jrr
i and Jlo

i .
Compute gi, grr

i , glr
i and glo

i with Sherman-Morrison formula.
end for

Theorem 2. [44] Let gi, glr
i , grr

i , and glo
i be the i-th iterates of Gauss, left Gauss-Radau, right Gauss-Radau,

and Gauss-Lobatto quadrature, respectively, as computed by Alg. 1. Then, gi and grr
i provide lower bounds on

u>A−1u, while glr
i and glo

i provide upper bounds.

It turns out that the bounds given by Gauss quadrature have a close relation to the approximation
error of conjugate gradient (CG) applied to a suitable problem. Since we know the convergence rate of
CG, we can obtain from it the following estimate on the relative error of Gauss quadrature.

Theorem 3 (Relative error Gauss quadrature). The i-th iterate of Gauss quadrature satisfies the relative error
bound

gN − gi
gN

≤ 2
(√κ − 1√

κ + 1

)i
, (3.5)

where κ := λ1(A)/λN(A) is the condition number of A.

In other words, Thm. 3 shows that the iterates of Gauss quadrature have a linear (geometric) conver-
gence rate.

4 Main Theoretical Results

In this section we summarize our main theoretical results. As before, detailed proofs may be found
in Appendix B. The key questions that we answer are: (i) do the bounds on u>A−1u generated by
GQL improve monotonically with each iteration; (ii) how tight are these bounds; and (iii) how fast do
Gauss-Radau and Gauss-Lobatto iterations converge? Our answers not only fill gaps in the literature
on quadrature, but provide a theoretical base for speeding up algorithms for some applications (see
Sections 2 and 5).

4.1 Lower Bounds

Our first result shows that both Gauss and right Gauss-Radau quadratures give iteratively better lower
bounds on u>A−1u. Moreover, with the same number of iterations, right Gauss-Radau yields tighter
bounds.

Theorem 4. Let i < N. Then, grr
i yields better bounds than gi but worse bounds than gi+1; more precisely,

gi ≤ grr
i ≤ gi+1, i < N.

Combining Theorem 4 with the convergence rate of relative error for Gauss quadrature (Thm. 3)
we obtain the following convergence rate estimate for right Gauss-Radau.

Theorem 5 (Relative error right Gauss-Radau). For each iteration i, the right Gauss-Radau iterate grr
i satisfies

gN − grr
i

gN
≤ 2

(√κ − 1√
κ + 1

)i
.

5

4.2 Upper Bounds

Our second result compares Gauss-Lobatto with left Gauss-Radau quadrature.

Theorem 6. Let i < N. Then, glr
i gives better upper bounds than glo

i but worse than glo
i+1; more precisely,

glo
i+1 ≤ glr

i ≤ glo
i , i < N.

This shows that bounds given by both Gauss-Lobatto and left Gauss-Radau become tighter with
each iteration. For the same number of iterations, left Gauss-Radau provides a tighter bound than
Gauss-Lobatto.

Combining the above two theorems, we obtain the following corollary for all four Gauss-type
quadratures.

Corollary 7 (Monotonicity). With increasing i, gi and grr
i give increasingly better lower bounds and glr

i and
glo

i give increasingly better upper bounds, that is,

gi ≤ gi+1; grr
i ≤ grr

i+1;

glr
i ≥ glr

i+1; glo
i ≥ glo

i+1.

4.3 Convergence rates

Our next two results state linear convergence rates for left Gauss-Radau quadrature and Gauss-Lobatto
quadrature applied to computing the BIF uT A−1u.

Theorem 8 (Relative error left Gauss-Radau). For each i, the left Gauss-Radau iterate glr
i satisfies

glr
i − gN

gN
≤ 2κ+

(√κ − 1√
κ + 1

)i
,

where κ+ := λN/λmin, i < N.

Theorem 8 shows that the error again decreases linearly, and it also depends on teh accuracy of
λmin, our estimate of the smallest eigenvalue that determines the range of integration. Using the
relations between left Gauss-Radau and Gauss-Lobatto, we readily obtain the following corollary.

Corollary 9 (Relative error Gauss-Lobatto). For each i, the Gauss-Lobatto iterate glo
i satisfies

glo
i − gN

gN
≤ 2κ+

(√κ − 1√
κ + 1

)i−1
,

where κ+ := λN/λmin and i < N.

Remarks All aforementioned results assumed that A is strictly positive definite with simple eigen-
values. In Appendix C, we show similar results for the more general case that A is only required to
be symmetric, and u lies in the space spanned by eigenvectors of A corresponding to distinct positive
eigenvalues.

4.4 Empirical Evidence

Next, we empirically verify our the theoretical results shown above. We generate a random symmetric
matrix A ∈ R100×100 with density 10%, where each entry is either zero or standard normal, and shift
its diagonal entries to make its smallest eigenvalue λ1 = 10−2, thus making A positive definite. We
set λmin = λ−1 = (λ1 − 10−5) and λmax = λ+

N = (λN + 10−5). We randomly sample u ∈ R100 from a

6

Iter
5 10 15 20 25

Va
l

130

135

140

145

150

155

λ1
- , λN

+

(a)

Iter
5 10 15 20 25

Va
l

130

135

140

145

150

155

0.1λ1
- , λN

+

(b)

Iter
5 10 15 20 25

Va
l

130

135

140

145

150

155

λ1
- , 10λN

+

Exact
Gauss
Gauss-Lobato
L-Gauss-Radau
R-Gauss-Radau

(c)

Figure 1: Lower and upper bounds computed by Gauss-type quadrature in each iteration on u>A−1u
with A ∈ R100×100.

standard normal distribution. Figure 1 illustrates how the lower and upper bounds given by the four
quadrature rules evolve with the number of iterations.

Figure 1 (b) and (c) show the sensitivity of the rules (except Gauss quadrature) to estimating the
extremal eigenvalues. Specifically, we use λmin = 0.1λ−1 and λmax = 10λ+

N .
The plots in Figure 1 agree with the theoretical results. First, all quadrature rules are seen to yield

iteratively tighter bounds. The bounds obtained by the Gauss-Radau quadrature are superior to those
given by Gauss and Gauss-Lobatto quadrature (also numerically verified). Notably, the bounds given
by all quadrature rules converge very fast – within 25 iterations they yield reasonably tight bounds.

It is valuable to see how the bounds are affected if we do not have good approximations to the
extremal eigenvalues λ1 and λN . Since Gauss quadrature does not depend on the approximations
λmin < λ1 and λmax > λN , its bounds remain the same in (a),(b),(c). Left Gauss-Radau depends on
the quality of λmin, and, with a poor approximation takes more iterations to converge (Figure 1(b)).
Right Gauss-Radau depends on the quality of λmax; thus, if we use λmax = 10λ+

N as our approximation,
its bounds become worse (Figure 1(c)). However, its bounds are never worse than those obtained by
Gauss quadrature.

Finally, Gauss-Lobatto depends on both λmin and λmax, so its bounds become worse whenever we
lack good approximations to λ1 or λN . Nevertheless, its quality is lower-bounded by left Gauss-Radau
as stated in Thm. 6.

5 Algorithmic Results and Applications

Our theoretical results show that Gauss-Radau quadrature provides good lower and upper bounds to
BIFs. More importantly, these bounds get iteratively tighter at a linear rate, finally becoming exact (see
Appendix B). However, in many applications motivating our work (see Section 2), we do not need
exact values of BIFs; bounds that are tight enough suffice for the algorithms to proceed. As a result, all
these applications benefit from our theoretical results that provide iteratively tighter bounds. This idea
translates into a retrospective framework for accelerating methods whose progress relies on knowing
an interval containing the BIF. Whenever the algorithm takes a step (transition) that depends on a BIF
(e.g., as in the next section, a state transition in a sampler if the BIF exceeds a certain threshold), we
compute rough bounds on its value. If the bounds suffice to take the critical decision (e.g., decide
the comparison), then we stop the quadrature. If they do not suffice, we take one or more additional
iterations of quadrature to tighten the bound. Algorithm 2 makes this idea explicit.

We illustrate our framework by accelerating: (i) Markov chain sampling for (k-)Dpps; and (ii) maxi-

7

Algorithm 2 Efficient Retrospective Framework
Require: Algorithm with transitions that depend on BIFs

while algorithm not yet done do
while no transition request for values of a BIF do

proceed with the original algorithm
end while
if exist transition request for values of a BIF then

while bounds on the BIF not tight enough to make the transition do
Retrospectively run one more iteration of left and(or) right Gauss-Radau to obtain tighter bounds.

end while
Make the correct transition with bounds

end if
end while

mization of a (specific) nonmonotone submodular function.

5.1 Retrospective Markov Chain (k-)Dpp

First, we use our framework to accelerate iterative samplers for Determinantal Point Processes. Specif-
ically, we discuss MH sampling [34]; the variant for Gibbs sampling follows analogously.

The key insight is that all state transitions of the Markov chain rely on a comparison between a scalar
p and a quantity involving the bilinear inverse form. Given the current set Y, assume we propose to
add element y to Y. The probability of transitioning to state Y ∪ {y} is q = min{1, Ly,y − Ly,Y L−1

Y LY,y}.
To decide whether to accept this transition, we sample p ∼ Uniform(0, 1); if p < q then we accept the
transition, otherwise we remain at Y. Hence, we need to compute q just accurately enough to decide
whether p < q. To do so, we can use the aforementioned lower and upper bounds on Ly,Y L−1

Y LY,y.
Let si and ti be lower and upper bounds for this BIF in the i-th iteration of Gauss quadrature. If

p ≤ Ly,y − ti, then we can safely accept the transition, if p ≥ Ly,y − si, then we can safely reject the
transition. Only if Ly,y− ti < p < Ly,y− si, we cannot make a decision yet, and therefore retrospectively
perform one more iteration of Gauss quadrature to obtain tighter upper and lower bounds si+1 and
ti+1. We continue until the bounds are sharp enough to safely decide whether to make the transition.
Note that in each iteration we make the same decision as we would with the exact value of the BIF,
and hence the resulting algorithm (Alg. 3) is an exact Markov chain for the Dpp. In each iteration, it
calls Alg. 4, which uses step-wise lazy Gauss quadrature for deciding the comparison, while stopping
as early as possible.

If we condition the Dpp on observing a set of a fixed cardinality k, we obtain a k-Dpp. The MH
sampler for this process is similar, but a state transition corresponds to swapping two elements (adding
y and removing v at the same time). Assume the current set is Y = Y′ ∪ {v}. If we propose to delete v
and add y to Y′, then the corresponding transition probability is

q = min
{

1,
Ly,y − Ly,Y′L

−1
Y′ LY′ ,y

Lv,v − Lv,Y′L
−1
Y′ LY′ ,v

}
. (5.1)

Again, we sample p ∼ Uniform(0, 1), but now we must compute two quantities, and hence two sets of
lower and upper bounds: sy

i , ty
i for Ly,Y′L

−1
Y′ LY′ ,y in the i-th Gauss quadrature iteration, and sv

j , tv
j for

Lv,Y′L
−1
Y′ LY′ ,v in the j-th Gauss quadrature iteration. Then if we have p ≤ Ly,y−ty

i
Lv,v−sv

j
, we can safely accept

the transition; and if p ≥ Ly,y−sy
i

Lv,v−tv
j

we can safely reject the transition; otherwise, we tighten the bounds

via additional Gauss-Radau iterations.
Refinements. We could perform one iteration for both y and v, but it may be that one set of bounds

is already sufficiently tight, while the other is loose. A straightforward idea would be to judge the

8

Algorithm 3 Gauss-Dpp (L)
Require: Dpp kernel L; ground set Y
Ensure: Y sampled from exact Dpp (L)

Randomly Initialize Y ⊆ Y
while chain not mixed do

Pick y ∈ Y , p ∈ (0, 1) uniformly randomly
if y ∈ Y then

Y′ = Y\{y}
Compute bounds λmin, λmax on the spectrum of LY′

if DppJudge(Lyy−p, LY′ ,y, LY′ , λmin, λmax) then
Y = Y′

end if
else

Y′ = Y ∪ {y}
Compute bounds λmin, λmax on the spectrum of LY
if not DppJudge(Lyy−p, LY,y, LY , λmin, λmax) then

Y = Y′

end if
end if

end while

Algorithm 4 DppJudge(t, u, A, λmin, λmax)
Require: target value t; vector u, matrix A; lower and upper bounds λmin and λmax on the spectrum of A
Ensure: Return true if t < u>A−1u, false otherwise

while true do
Run one Gauss-Radau iteration to get grr and glr for u>A−1u.
if t < grr then

return true
else if t ≥ glr then

return false
end if
i = i + 1

end while

tightness of the lower and upper bounds by their difference (gap) ti−si, and decide accordingly which
quadrature to iterate further.

But the bounds for y and v are not symmetric and contribute differently to the transition decision.

In essence, we need to judge the relation between p and
Ly,y−Ly,Y′ L

−1
Y′ LY′ ,y

Lv,v−Lv,Y′ L
−1
Y′ LY′ ,v

, or, equivalently, the relation

between pLv,v − Ly,y and pLv,Y′L
−1
Y′ LY′ ,v − Ly,Y′L

−1
Y′ LY′ ,y. Since the left hand side is “easy”, the essential

part is the right hand side. Assuming that in practice the impact is larger when the gap is larger,
we tighten the bounds for Lv,Y L−1

Y LY,v if p(tv
j − sv

j) > (ty
i − sy

i), and otherwise tighen the bounds for

Ly,Y L−1
Y LY,y. Details of the final algorithm with this refinement are shown in Appendix D.

5.2 Retrospective Double Greedy Algorithm

As indicated in Section 2, a number of applications, including sensing and information maximization
with Gaussian Processes, rely on maximizing a submodular function given as F(S) = log det(LS). In
general, this function may be non-monotone. In this case, an algorithm of choice is the double greedy
algorithm of Buchbinder et al. [14].

The double greedy algorithm starts with two sets X0 = ∅ and Y0 = Y and serially iterates through
all elements to construct a near-optimal subset. At iteration i, it includes element i into Xi−1 with

9

probability qi, and with probability 1− qi it excludes i from Yi−1. The decisive value qi is determined
by the marginal gains ∆−i = F(Yi−1\{i})− F(Yi−1) and ∆+

i = F(Xi−1 ∪ {i})− F(Xi−1):

qi = [∆+
i]+/[∆+

i]+ + [∆−i]+.

For the log-det function, we obtain

∆+
i = − log(Li,i − Li,Y′i−1

L−1
Y′i−1

LY′i−1,i)

∆−i = log(Li,i − Li,Xi−1 L−1
Xi−1

LXi−1,i),

where Y′i−1 = Yi−1\{i}. In other words, at iteration i the algorithm uniformly samples p ∈ (0, 1), and
then checks if

p[∆−i]+ ≤ (1− p)[∆+
i]+,

and if true, adds i to Xi−1, otherwise removes it from Yi−1.
This essential decision, whether to retain or discard an element, again involves bounding BIFs,

for which we can take advantage of our framework, and profit from the typical sparsity of the data.
Concretely, we retrospectively compute the lower and upper bounds on these BIFs, i.e., lower and
upper bounds l+i and u+

i on ∆+
i , and l−i and u−i on ∆−i . If p[u−i]+ ≤ (1− p)[l+i]+ we safely add i to

Xi−1; if p[l−i]+ > (1− p)[u+
i]+ we safely remove i from Yi−1; otherwise we compute a set of tighter

bounds by further iterating the quadrature.
As before, the bounds for ∆−i and ∆+

i may not contribute equally to the transition decision. We
can again apply the refinement mentioned in Section 5.1: if p([u−i]+ − [l−i]+) ≤ (1− p)([u+

i]+ − [l+i]+)

we tighten bounds for ∆+
i , otherwise we tighten bounds for ∆−i . The resulting algorithm is shown in

Appendix E.

Data Dimension nnz Density(%)

Abalone 4,177 144,553 0.83

Wine 4,898 2,659,910 11.09

GR 5,242 34,209 0.12

HEP 9,877 61,821 0.0634

Epinions 75,879 518,231 0.009

Slashdot 82,168 959,454 0.014

Table 1: Data. For all datasets we add an 1E-3 times identity matrix to ensure positive definiteness.

5.3 Empirical Evidence

We perform experiments on both synthetic and real-world datasets to test the impact of our retro-
spective quadrature framework in applications. We focus on (k-)Dpp sampling and the double greedy
algorithm for the log-det objective.

5.3.1 Synthetic Datasets

We generate small sparse matrices using methods similar to Section 4.4. For (k-)Dpp we generate
5000× 5000 matrices while for double greedy we use 2000× 2000. We vary the density of the matrices
from 10−3 to 10−1. The running time and speedup are shown in Figure 2.

10

Density
10-310-210-1

Ti
m

e
pe

r I
te

r (
s)

0

0.05

0.1

0.15

0.2
Markov Chain DPP

Density
10-310-210-1

tim

es
 a

cc
el

er
at

io
n

100

101

102

103 Speedup
Density

10-310-210-1

Ti
m

e
pe

r I
te

r (
s)

0

0.05

0.1

0.15

0.2
Markov Chain k-DPP

Density
10-310-210-1

tim

es
 a

cc
el

er
at

io
n

100

101

102

103 Speedup
Density

10-310-210-1

Ti
m

e
(s

)

0

50

100

150

200

250
Double Greedy

Original
Gauss

Density
10-310-210-1

tim

es
 a

cc
el

er
at

io
n

100

101

102 Speedup

Figure 2: Running times (top) and corresponding speedup (bottom) on synthetic data. (k-)Dpp is
initialized with random subsets of size N/3 and corresponding running times are averaged over 1,000

iterations of the chain. All results are averaged over 3 runs.

11

Abalone Wine GR HEP Epinions Slashdot

Dpp

9.6E-3 1x 8.5E-2 1x 9.3E-3 1x 6.5E-2 1x 1.46 1x 5.85 1x
5.4E-4 17.8x 5.9E-3 14.4x 4.3E-4 21.6x 5.9E-4 110.2x 3.7E-3 394.6x 7.1E-3 823.9x

k-Dpp

1.4E-2 1x 0.15 1x 1.7E-2 1x 0.13 1x 2.40 1x 11.83 1x
7.3E-4 19.2x 1.1E-2 13.6x 7.3E-4 23.3x 9.2E-4 141.3x 4.9E-3 489.8x 1E-2 1183x

Dg

1025.6 1x 1951.3 1x 965.8 1x 6269.4 1x ∗ ∗ ∗ ∗
17.3 59.3x 423.2 4.6x 10 9.7x 25.3 247.8x 418 ∗ 712.9 ∗

Table 2: Running time and speedup for (k-)Dpp and double greedy. For results on each dataset (occupy-
ing two columns), the first column shows the running time (in seconds) and the second column shows
the speedup. For each algorithm (occupying two rows), the first row shows results from the original
algorithm and the second row shows results from algorithms using our framework. For Epinions and
Slashdot, entries of “∗” indicate that the experiments did not finish within 24 hours.

The results suggest that our framework greatly accelerates both Dpp sampling and submodular
maximization. The speedups are particularly pronounced for sparse matrices. As the matrices become
very sparse, the original algorithms profit from sparsity too, and the difference shrinks a little. Overall,
we see that our framework has the potential to lead to substantial speedups for algorithms involving
bilinear inverse forms.

5.3.2 Real Datasets

We further test our framework on real-world datasets of varying sizes. We selected 6 datasets, four
of them are of small/medium size and two are large. The four small/medium-sized datasets are
used in [26]. The first two of small/medium-sized datasets, Abalone and Wine2, are popular datasets
for regression, and we construct sparse kernel matrices with an RBF kernel. We set the bandwidth
parameter for Abalone as σ = 0.15 and that for Wine as σ = 1 and the cut-off parameter as 3σ for
both datasets, as in [26]. The other two small/medium-sized datasets are GR (arXiv High Energy
Physics collaboration graph) and HEP (arXiv General Relativity collaboration graph), where the kernel
matrices are Laplacian matrices. The final two large datasets datasets are Epinions (Who-trusts-whom
network of Epinions) and Slashdot (Slashdot social network from Feb. 2009) 3 with large Laplacian
matrices. Dataset statistics are shown in Tab. 1.

The running times in Tab. 2 suggest that the iterative bounds from quadrature significantly accel-
erate (k-)Dpp sampling and double greedy on real data. Our algorithms lead to speedups of up to a
thousand times.

On the large sparse matrices, the “standard” double greedy algorithm did not finish within 24

hours, due to the expensive matrix operations involved. With our framework, the algorithm needs
only 15 minutes.

To our knowledge, these results are the first time to run Dpp and double greedy for information
gain on such large datasets.

5.4 Numerical details

Instability. As seen in Alg. 1, the quadrature algorithm is built upon Lanczos iterations. Although
in theory Lanczos iterations construct a set of orthogonal Lanczos vectors, in practice the constructed
vectors usually lose orthogonality after some iterations due to rounding errors. One way to deal with
this problem is to reorthogonalize the vectors, either completely at each iteration or selectively [?].

2Available at http://archive.ics.uci.edu/ml/.
3Available at https://snap.stanford.edu/data/.

12

http://archive.ics.uci.edu/ml/
https://snap.stanford.edu/data/

Also, an equivalent Lanczos iteration proposed in [?] which uses a different expression to improve
local orthogonality. Further discussion on numerical stability of the method lies beyond the scope of
this paper.

Preconditioning. For Gauss quadrature on u>A−1u, the convergence rate of bounds is dependent on
the condition number of A. We can use preconditioning techniques to get a well-conditioned submatrix
and proceed with that. Concretely, observe that for non-singular C,

u>A−1u = u>C>C−>A−1C−1Cu

= (Cu)(CAC>)−1(Cu).

Thus, if CAC> is well-conditioned, we can use it with the vector Cu in Gauss quadrature.
There exists various ways to obtain good preconditioners for an SPD matrix. A simple choice is to

use C = [diag(A)]−1/2. There also exists methods for efficiently constructing sparse inverse matrix [?].
If L happens to be an SDD matrix, we can use techniques introduced in [?] to construct an approximate
sparse inverse in near linear time.

6 Conclusion

In this paper we present a general and powerful computational framework for algorithms that rely on
computations of bilinear inverse forms. The framework uses Gauss quadrature methods to lazily and
iteratively tighten bounds, and is supported by our new theoretical results. We analyze properties of
the various types of Gauss quadratures for approximating the bilinear inverse forms and show that all
bounds are monotonically becoming tighter with the number of iterations; those given by Gauss-Radau
are superior to those obtained from other Gauss-type quadratures; and both lower and upper bounds
enjoy a linear convergence rate. We empirically verify the efficiency of our framework and are able to
obtain speedups of up to a thousand times for two popular examples: maximizing information gain
and sampling from determinantal point processes.

Acknowledgements This research was partially supported by NSF CAREER award 1553284 and a
Google Research Award.

References

[1] Anari, Nima, Gharan, Shayan Oveis, and Rezaei, Alireza. Monte Carlo Markov chain algorithms
for sampling strongly Rayleigh distributions and determinantal point processes. In COLT, 2016.

[2] Atzori, Luigi, Iera, Antonio, and Morabito, Giacomo. The Internet of Things: A survey. Computer
networks, 54(15):2787–2805, 2010.

[3] Bai, Zhaojun and Golub, Gene H. Bounds for the trace of the inverse and the determinant of
symmetric positive definite matrices. Annals of Numerical Mathematics, pp. 29–38, 1996.

[4] Bai, Zhaojun, Fahey, Gark, and Golub, Gene H. Some large-scale matrix computation problems.
Journal of Computational and Applied Mathematics, pp. 71–89, 1996.

[5] Bekas, Constantine, Kokiopoulou, Effrosyni, and Saad, Yousef. An estimator for the diagonal of a
matrix. Applied numerical mathematics, pp. 1214–1229, 2007.

[6] Bekas, Constantine, Curioni, Alessandro, and Fedulova, Irina. Low cost high performance uncer-
tainty quantification. In Proceedings of the 2nd Workshop on High Performance Computational Finance,
2009.

[7] Belabbas, Mohamed-Ali and Wolfe, Patrick J. Spectral methods in machine learning and new
strategies for very large datasets. Proceedings of the National Academy of Sciences, pp. 369–374, 2009.

13

[8] Benzi, Michele and Golub, Gene H. Bounds for the entries of matrix functions with applications
to preconditioning. BIT Numerical Mathematics, pp. 417–438, 1999.

[9] Benzi, Michele and Klymko, Christine. Total communicability as a centrality measure. J. Complex
Networks, pp. 124–149, 2013.

[10] Bonacich, Phillip. Power and centrality: A family of measures. American Journal of Sociology, pp.
1170–1182, 1987.

[11] Boutsidis, Christos, Mahoney, Michael W., and Drineas, Petros. An improved approximation
algorithm for the column subset selection problem. In SODA, pp. 968–977, 2009.

[12] Brezinski, Claude. Error estimates for the solution of linear systems. SIAM Journal on Scientific
Computing, pp. 764–781, 1999.

[13] Brezinski, Claude, Fika, Paraskevi, and Mitrouli, Marilena. Estimations of the trace of powers of
positive self-adjoint operators by extrapolation of the moments. Electronic Transactions on Numerical
Analysis, pp. 144–155, 2012.

[14] Buchbinder, Niv, Feldman, Moran, Naor, Joseph, and Schwartz, Roy. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. In FOCS, 2012.

[15] Dong, Shao-Jing and Liu, Keh-Fei. Stochastic estimation with z2 noise. Physics Letters B, pp.
130–136, 1994.

[16] Estrada, Ernesto and Higham, Desmond J. Network properties revealed through matrix functions.
SIAM Review, pp. 696–714, 2010.

[17] Fenu, Caterina, Martin, David R., Reichel, Lothar, and Rodriguez, Giuseppe. Network analysis
via partial spectral factorization and Gauss quadrature. SIAM Journal on Scientific Computing, pp.
A2046–A2068, 2013.

[18] Fika, Paraskevi and Koukouvinos, Christos. Stochastic estimates for the trace of functions of
matrices via Hadamard matrices. Communications in Statistics-Simulation and Computation, 2015.

[19] Fika, Paraskevi and Mitrouli, Marilena. Estimation of the bilinear form y∗ f (A)x for Hermitian
matrices. Linear Algebra and its Applications, 2015.

[20] Fika, Paraskevi, Mitrouli, Marilena, and Roupa, Paraskevi. Estimates for the bilinear form xT A−1y
with applications to linear algebra problems. Electronic Transactions on Numerical Analysis, pp. 70–
89, 2014.

[21] Freericks, James K. Transport in multilayered nanostructures. The Dynamical Mean-Field Theory
Approach, Imperial College, London, 2006.

[22] Frommer, Andreas, Lippert, Thomas, Medeke, Björn, and Schilling, Klaus. Numerical Challenges
in Lattice Quantum Chromodynamics: Joint Interdisciplinary Workshop of John Von Neumann Institute
for Computing, Jülich, and Institute of Applied Computer Science, Wuppertal University, August 1999,
volume 15. Springer Science & Business Media, 2012.

[23] Gauss, Carl F. Methodus nova integralium valores per approximationem inveniendi. apvd Henricvm
Dieterich, 1815.

[24] Gautschi, Walter. A survey of Gauss-Christoffel quadrature formulae. In EB Christoffel, pp. 72–147.
Springer, 1981.

[25] Gillenwater, Jennifer, Kulesza, Alex, and Taskar, Ben. Near-optimal MAP inference for determi-
nantal point processes. In NIPS, 2012.

[26] Gittens, Alex and Mahoney, Michael W. Revisiting the Nyström method for improved large-scale
machine learning. ICML, 2013.

[27] Golub, Gene H. Some modified matrix eigenvalue problems. SIAM Review, pp. 318–334, 1973.
[28] Golub, Gene H. and Meurant, Gérard. Matrices, moments and quadrature II; how to compute the

norm of the error in iterative methods. BIT Numerical Mathematics, pp. 687–705, 1997.
[29] Golub, Gene H. and Meurant, Gérard. Matrices, moments and quadrature with applications. Princeton

University Press, 2009.
[30] Golub, Gene H. and Welsch, John H. Calculation of Gauss quadrature rules. Mathematics of

computation, pp. 221–230, 1969.
[31] Golub, Gene H., Stoll, Martin, and Wathen, Andy. Approximation of the scattering amplitude and

14

linear systems. Elec. Tran. on Numerical Analysis, pp. 178–203, 2008.
[32] Hestenes, Magnus R. and Stiefel, Eduard. Methods of conjugate gradients for solving linear

systems. J. Research of the National Bureau of Standards, pp. 409–436, 1952.
[33] Hough, J. Ben, Krishnapur, Manjunath, Peres, Yuval, and Virág, Bálint. Determinantal processes

and independence. Probability Surveys, 2006.
[34] Kang, Byungkon. Fast determinantal point process sampling with application to clustering. In

NIPS, pp. 2319–2327, 2013.
[35] Krause, Andreas, Singh, Ajit, and Guestrin, Carlos. Near-optimal sensor placements in Gaussian

processes: Theory, efficient algorithms and empirical studies. JMLR, pp. 235–284, 2008.
[36] Kulesza, Alex and Taskar, Ben. Determinantal point processes for machine learning.

arXiv:1207.6083, 2012.
[37] Kwok, James T. and Adams, Ryan P. Priors for diversity in generative latent variable models. In

NIPS, pp. 2996–3004, 2012.
[38] Lanczos, Cornelius. An iteration method for the solution of the eigenvalue problem of linear differential

and integral operators. United States Governm. Press Office Los Angeles, CA, 1950.
[39] Lee, Christina E., Ozdaglar, Asuman E., and Shah, Devavrat. Solving systems of linear equations:

Locally and asynchronously. arXiv, abs/1411.2647, 2014.
[40] Leskovec, Jure, Lang, Kevin J., Dasgupta, Anirban, and Mahoney, Michael W. Statistical properties

of community structure in large social and information networks. In WWW, pp. 695–704, 2008.
[41] Lin, Lin, Yang, Chao, Lu, Jianfeng, and Ying, Lexing. A fast parallel algorithm for selected inver-

sion of structured sparse matrices with application to 2D electronic structure calculations. SIAM
Journal on Scientific Computing, pp. 1329–1351, 2011.

[42] Lin, Lin, Yang, Chao, Meza, Juan C., Lu, Jianfeng, Ying, Lexing, and E, Weinan. Selinv–an al-
gorithm for selected inversion of a sparse symmetric matrix. ACM Transactions on Mathematical
Software, 2011.

[43] Lobatto, Rehuel. Lessen over de differentiaal-en integraal-rekening: Dl. 2 Integraal-rekening, volume 1.
Van Cleef, 1852.

[44] Meurant, Gérard. The computation of bounds for the norm of the error in the conjugate gradient
algorithm. Numerical Algorithms, pp. 77–87, 1997.

[45] Meurant, Gérard. Numerical experiments in computing bounds for the norm of the error in the
preconditioned conjugate gradient algorithm. Numerical Algorithms, pp. 353–365, 1999.

[46] Meurant, Gérard. The Lanczos and conjugate gradient algorithms: from theory to finite precision compu-
tations, volume 19. SIAM, 2006.

[47] Minoux, Michel. Accelerated greedy algorithms for maximizing submodular set functions. In
Optimization Techniques, pp. 234–243. Springer, 1978.

[48] Mirzasoleiman, Baharan, Badanidiyuru, Ashwinkumar, Karbasi, Amin, Vondrák, Jan, and Krause,
Andreas. Lazier than lazy greedy. In AAAI, 2015.

[49] Nemhauser, George L.., Wolsey, Laurence A., and Fisher, Marshall L. An analysis of approxima-
tions for maximizing submodular set functions–I. Mathematical Programming, pp. 265–294, 1978.

[50] Page, Lawrence, Brin, Sergey, Motwani, Rajeev, and Winograd, Terry. The PageRank citation ranking:
bringing order to the web. Stanford InfoLab, 1999.

[51] Radau, Rodolphe. Étude sur les formules d’approximation qui servent à calculer la valeur
numérique d’une intégrale définie. J. de Mathématiques Pures et Appliquées, pp. 283–336, 1880.

[52] Rasmussen, Carl E. and Williams, Christopher K. I. Gaussian Processes for Machine Learning. MIT
Press, Cambridge, MA, 2006.

[53] Rocková, Veronika and George, Edward I. Determinantal priors for variable selection, 2015.
[54] Scott, John. Social network analysis. Sage, 2012.
[55] Sherman, Jack and Morrison, Winifred J. Adjustment of an inverse matrix corresponding to a

change in one element of a given matrix. The Annals of Mathematical Statistics, pp. 124–127, 1950.
[56] Shewchuk, Jonathan R. An introduction to the conjugate gradient method without the agonizing

pain, 1994.

15

[57] Sidje, Roger B. and Saad, Yousef. Rational approximation to the fermi–dirac function with appli-
cations in density functional theory. Numerical Algorithms, pp. 455–479, 2011.

[58] Stoer, Josef and Bulirsch, Roland. Introduction to numerical analysis, volume 12. Springer Science &
Business Media, 2013.

[59] Sviridenko, Maxim, Vondrák, Jan, and Ward, Justin. Optimal approximation for submodular and
supermodular optimization with bounded curvature. In SODA, 2015.

[60] Tang, Jok M. and Saad, Yousef. A probing method for computing the diagonal of a matrix inverse.
Numerical Linear Algebra with Applications, pp. 485–501, 2012.

[61] Wasow, Wolfgang R. A note on the inversion of matrices by random walks. Mathematical Tables
and Other Aids to Computation, pp. 78–81, 1952.

[62] Wilf, Herbert S. Mathematics for the Physical Sciences. Wiley, New York, 1962.

16

A Further Background on Gauss Quadrature

We present below a more detailed summary of material on Gauss quadrature to make the paper self-
contained.

A.1 Selecting weights and nodes

We’ve described that the Riemann-Stieltjes integral could be expressed as

I[f] := Qn + Rn = ∑n
i=1 ωi f (θi) + ∑m

i=1 νi f (τi) + Rn[f],

where Qn denotes the nth degree approximation and Rn denotes a remainder term. The weights
{ωi}n

i=1, {νi}m
i=1 and nodes {θi}n

i=1 are chosen such that for all polynomials of degree less than 2n +
m− 1, denoted f ∈ P2n+m−1, we have exact interpolation I[f] = Qn. One way to compute weights and
nodes is to set f (x) = xi for i ≤ 2n + m − 1 and then use this exact nonlinear system. But there is
an easier way to obtain weights and nodes, namely by using polynomials orthogonal with respect to
the measure α. Specifically, we construct a sequence of orthogonal polynomials p0(λ), p1(λ), . . . such that
pi(λ) is a polynomial in λ of degree exactly k, and pi, pj are orthogonal, i.e., they satisfy

∫ λmax

λmin

pi(λ)pj(λ)dα(λ) =

{
1, i = j
0, otherwise.

The roots of pn are distinct, real and lie in the interval of [λmin, λmax], and form the nodes {θi}n
i=1 for

Gauss quadrature (see, e.g., [29, Ch. 6]).
Consider the two monic polynomials whose roots serve as quadrature nodes:

πn(λ) = ∏n
i=1(λ− θi), ρm(λ) = ∏m

i=1(λ− τi),

where ρ0 = 1 for consistency. We further denote ρ+m = ±ρm, where the sign is taken to ensure ρ+m ≥ 0
on [λmin, λmax]. Then, for m > 0, we calculate the quadrature weights as

ωi = I
[

ρ+m(λ)πn(λ)

ρ+m(θi)π′n(θi)(λ− θi)

]
, νj = I

[
ρ+m(λ)πn(λ)

(ρ+m)′(τj)πn(τj)(λ− τj)

]
,

where f ′(λ) denotes the derivative of f with respect to λ. When m = 0 the quadrature degenerates to
Gauss quadrature and we have

ωi = I
[

πn(λ)

π′n(θi)(λ− θi)

]
.

Although we have specified how to select nodes and weights for quadrature, these ideas cannot be
applied to our problem because the measure α is unknown. Indeed, calculating the measure explicitly
would require knowing the entire spectrum of A, which is as good as explicitly computing f (A), hence
untenable for us. The next section shows how to circumvent the difficulties due to unknown α.

A.2 Gauss Quadrature Lanczos (GQL)

The key idea to circumvent our lack of knowledge of α is to recursively construct polynomials called
Lanczos polynomials. The construction ensures their orthogonality with respect to α. Concretely, we
construct Lanczos polynomials via the following three-term recurrence:

βi pi(λ) = (λ− αi)pi−1(λ)− βi−1 pi−2(λ), i = 1, 2, . . . , n
p−1(λ) ≡ 0; p0(λ) ≡ 1,

(A.1)

17

while ensuring
∫ λmax

λmin
dα(λ) = 1. We can express (A.1) in matrix form by writing

λPn(λ) = JnPn(λ) + βn pn(λ)en,

where Pn(λ) := [p0(λ), . . . , pn−1(λ)]
>, en is nth canonical unit vector, and Jn is the tridiagonal matrix

Jn =

α1 β1
β1 α2 β2

β2
.
. . . αn−1 βn−1

βn−1 αn

 . (A.2)

This matrix is known as the Jacobi matrix, and is closed related to Gauss quadrature. The following
well-known theorem makes this relation precise.

Theorem 10 ([30, 62]). The eigenvalues of Jn form the nodes {θi}n
i=1 of Gauss-type quadratures. The weights

{ωi}n
i=1 are given by the squares of the first elements of the normalized eigenvectors of Jn.

Thus, if Jn has the eigendecomposition Jn = P>n ΓPn, then for Gauss quadrature Thm. 10 yields

Qn = ∑n
i=1 ωi f (θi) = e>1 P>n f (Γ)Pne1 = e>1 f (Jn)e1. (A.3)

Specialization. We now specialize to our main focus, f (A) = A−1, for which we prove more precise
results. In this case, (A.3) becomes Qn = [J−1

n]1,1. The task now is to compute Qn, and given A, u to
obtain the Jacobi matrix Jn.

Fortunately, we can efficiently calculate Jn iteratively using the Lanczos Algorithm [38]. Suppose
we have an estimate Ji, in iteration (i + 1) of Lanczos, we compute the tridiagonal coefficients αi+1
and βi+1 and add them to this estimate to form Ji+1. As to Qn, assuming we have already computed
[J−1

i]1,1, letting ji = J−1
i ei and invoking the Sherman-Morrison identity [55] we obtain the recursion:

[J−1
i+1]1,1 = [J−1

i]1,1 +
β2

i ([ji]1)
2

αi+1 − β2
i [ji]i

, (A.4)

where [ji]1 and [ji]i can be recursively computed using a Cholesky-like factorization of Ji [29, p.31].
For Gauss-Radau quadrature, we need to modify Ji so that it has a prescribed eigenvalue. More

precisely, we extend Ji to Jlr
i for left Gauss-Radau (Jrr

i for right Gauss-Radau) with βi on the off-diagonal
and αlr

i (αrr
i) on the diagonal, so that Jlr

i (Jrr
i) has a prescribed eigenvalue of λmin (λmax).

For Gauss-Lobatto quadrature, we extend Ji to Jlo
i with values βlo

i and αlo
i chosen to ensure that Jlo

i
has the prescribed eigenvalues λmin and λmax. For more detailed on the construction, see [27].

For all methods, the approximated values are calculated as [(J′i)
−1]1,1, where J′i ∈ {Jlr

i , Jrr
i , Jlo

i } is the
modified Jacobi matrix. Here J′i is constructed at the i-th iteration of the algorithm.

The algorithm for computing Gauss, Gauss-Radau, and Gauss-Lobatto quadrature rules with the
help of Lanczos iteration is called Gauss Quadrature Lanczos (GQL) and is shown in [28]. We recall its
pseudocode in Alg. 1 to make our presentation self-contained (and for our proofs in Section 4).

The error of approximating I[f] by Gauss-type quadratures can be expressed as

Rn[f] =
f (2n+m)(ξ)

(2n + m)!
I[ρmπ2

n],

for some ξ ∈ [λmin, λmax] (see, e.g., [58]). Note that ρm does not change sign in [λmin, λmax]; but with
different values of m and τj we obtain different (but fixed) signs for Rn[f] using f (λ) = 1/λ and
λmin > 0. Concretely, for Gauss quadrature m = 0 and Rn[f] ≥ 0; for left Gauss-Radau m = 1 and

18

Algorithm 5 Gauss Quadrature Lanczos (GQL)
Require: u and A the corresponding vector and matrix, λmin and λmax lower and upper bounds for

the spectrum of A
Ensure: gi, grr

i , glr
i and glo

i the Gauss, right Gauss-Radau, left Gauss-Radau and Gauss-Lobatto quadra-
ture computed at i-th iteration
Initialize: u−1 = 0, u0 = u/‖u‖, α1 = u>0 Au0, β1 = ‖(A− α1 I)u0‖, g1 = ‖u‖/α1, c1 = 1, δ1 = α1,
δlr

1 = α1 − λmin, δrr
1 = α1 − λmax, u1 = (A− α1 I)u0/β1, i = 2

while i ≤ N do
αi = u>i−1 Aui−1 {Lanczos Iteration}
ũi = Aui−1 − αiui−1 − βi−1ui−2
βi = ‖ũi‖
ui = ũi/βi

gi = gi−1 +
‖u‖β2

i−1c2
i−1

δi−1(αiδi−1−β2
i−1)
{Update gi with Sherman-Morrison formula}

ci = ci−1βi−1/δi−1

δi = αi −
β2

i−1
δi−1

, δlr
i = αi − λmin −

β2
i−1

δlr
i−1

, δrr
i = αi − λmax −

β2
i−1

δrr
i−1

αlr
i = λmin +

β2
i

δlr
i

, αrr
i = λmax +

β2
i

δrr
i
{Solve for Jlr

i and Jrr
i }

αlo
i =

δlr
i δrr

i
δrr

i −δlr
i
(λmax

δlr
i
− λmin

δrr
i
), (βlo

i)
2 =

δlr
i δrr

i
δrr

i −δlr
i
(λmax − λmin) {Solve for Jlo

i }

glr
i = gi +

β2
i c2

i ‖u‖
δi(α

lr
i δi−β2

i)
, grr

i = gi +
β2

i c2
i ‖u‖

δi(α
rr
i δi−β2

i)
, glo

i = gi +
(βlo

i)2c2
i ‖u‖

δi(α
lo
i δi−(βlo

i)2)
{Update grr

i , glr
i and glo

i with

Sherman-Morrison formula}
i = i + 1

end while

τ1 = λmin, so we have Rn[f] ≤ 0; for right Gauss-Radau we have m = 1 and τ1 = λmax, thus Rn[f] ≥ 0;
while for Gauss-Lobatto we have m = 2, τ1 = λmin and τ2 = λmax, so that Rn[f] ≤ 0. This behavior of
the errors clearly shows the ordering relations between the target values and the approximations made
by the different quadrature rules. Lemma 2 (see e.g., [44]) makes this claim precise.

Lemma 11. Let gi, glr
i , grr

i , and glo
i be the approximations at the i-th iteration of Gauss, left Gauss-Radau, right

Gauss-Radau, and Gauss-Lobatto quadrature, respectively. Then, gi and grr
i provide lower bounds on u>A−1u,

while glr
i and glo

i provide upper bounds.

The final connection we recall as background is the method of conjugate gradients. This helps us
analyze the speed at which quadrature converges to the true value (assuming exact arithmetic).

A.3 Relation with Conjugate Gradient

While Gauss-type quadratures relate to the Lanczos algorithm, Lanczos itself is closely related to
conjugate gradient (CG) [32], a well-known method for solving Ax = b for positive definite A.

We recap this connection below. Let xk be the estimated solution at the k-th CG iteration. If x∗

denotes the true solution to Ax = b, then the error εk and residual rk are defined as

εk := x∗ − xk, rk = Aεk = b− Axk, (A.5)

At the k-th iteration, xk is chosen such that rk is orthogonal to the k-th Krylov space, i.e., the linear space
Kk spanned by {r0, Ar0, . . . , Ak−1r0}. It can be shown [46] that rk is a scaled Lanczos vector from the
k-th iteration of Lanczos started with r0. Noting the relation between Lanczos and Gauss quadrature
applied to appoximate r>0 A−1r0, one obtains the following theorem that relates CG with GQL.

19

Theorem 12 (CG and GQL; [45]). Let εk be the error as in (A.5), and let ‖εk‖2
A := εT

k Aεk. Then, it holds that

‖εk‖2
A = ‖r0‖2([J−1

N]1,1 − [J−1
k]1,1),

where Jk is the Jacobi matrix at the k-th Lanczos iteration starting with r0.

Finally, the rate at which ‖εk‖2
A shrinks has also been well-studied, as noted below.

Theorem 13 (CG rate, see e.g. [56]). Let εk be the error made by CG at iteration k when started with x0. Let
κ be the condition number of A, i.e., κ = λ1/λN . Then, the error norm at iteration k satisfies

‖εk‖A ≤ 2
(√κ − 1√

κ + 1

)k
‖ε0‖A.

Due to these explicit relations between CG and Lanczos, as well as between Lanczos and Gauss
quadrature, we readily obtain the following convergence rate for relative error of Gauss quadrature.

Theorem 14 (Gauss quadrature rate). The i-th iterate of Gauss quadrature satisfies the relative error bound

gN − gi
gN

≤ 2
(√κ − 1√

κ + 1

)i
.

Proof. This is obtained by exploiting relations among CG, Lanczos and Gauss quadrature. Set x0 = 0
and b = u. Then, ε0 = x∗ and r0 = u. An application of Thm. 12 and Thm. 13 thus yields the bound

‖εi‖2
A = ‖u‖2([J−1

N]1,1 − [J−1
i]1,1) = gN − gi

≤ 2
(√κ − 1√

κ + 1

)i
‖ε0‖A = 2

(√κ − 1√
κ + 1

)i
u>A−1u = 2

(√κ − 1√
κ + 1

)i
gN

where the last equality draws from Lemma 15.

In other words, Thm. 14 shows that the iterates of Gauss quadrature converge linearly.

B Proofs for Main Theoretical Results

We begin by proving an exactness property of Gauss and Gauss-Radau quadrature.

Lemma 15 (Exactness). With A being symmetric positive definite with simple eigenvalues, the iterates gN , glr
N ,

and grr
N are exact. Namely, after N iterations they satisfy

gN = glr
N = grr

N = u>A−1u.

Proof. Observe that the Jacobi tridiagonal matrix can be computed via Lanczos iteration, and Lanczos
is essentially essentially an iterative tridiagonalization of A. At the i-th iteration we have Ji = V>i AVi,
where Vi ∈ RN×i are the first i Lanczos vectors (i.e., a basis for the i-th Krylov space). Thus, JN =
V>N AVN where VN is an N × N orthonormal matrix, showing that JN has the same eigenvalues as A.
As a result πN(λ) = ∏N

i=1(λ− λi), and it follows that the remainder

RN [f] =
f (2N)(ξ)

(2N)!
I[π2

N] = 0,

for some scalar ξ ∈ [λmin, λmax], which shows that gN is exact for u>A−1u. For left and right Gauss-
Radau quadrature, we have βN = 0, αlr

N = λmin, and αrr
N = λmax, while all other elements of the

20

(N + 1)-th row or column of J′N are zeros. Thus, the eigenvalues of J′N are λ1, . . . , λN , τ1, and πN(λ)

again equals ∏N
i=1(λ− λi). As a result, the remainder satisfies

RN [f] =
f (2N)(ξ)

(2N)!
I[(λ− τ1)π

2
N] = 0,

from which it follows that both grr
N and glr

N are exact.

The convergence rate in Thm. 13 and the final exactness of iterations in Lemma 15 does not neces-
sarily indicate that we are making progress at each iterations. However, by exploiting the relations to
CG we can indeed conclude that we are making progress in each iteration in Gauss quadrature.

Theorem 16. The approximation gi generated by Gauss quadrature is monotonically nondecreasing, i.e.,

gi ≤ gi+1, for i < N.

Proof. At each iteration ri is taken to be orthogonal to the i-th Krylov space: Ki = span{u, Au, . . . , Ai−1u}.
Let Πi be the projection onto the complement space of Ki. The residual then satisfies

‖εi+1‖2
A = εT

i+1 Aεi+1 = r>i+1 A−1ri+1

= (Πi+1ri)
>A−1Πi+1ri

= r>i (Π>i+1 A−1Πi+1)ri ≤ ri A−1ri,

where the last inequality follows from Π>i+1 A−1Πi+1 � A−1. Thus ‖εi‖2
A is monotonically nonincreas-

ing, whereby gN − gi ≥ 0 is monotonically decreasing and thus gi is monotonically nondecreasing.

Before we proceed to Gauss-Radau, let us recall a useful theorem and its corollary.

Theorem 17 (Lanczos Polynomial [29]). Let ui be the vector generated by Alg. 1 at the i-th iteration; let pi
be the Lanczos polynomial of degree i. Then we have

ui = pi(A)u0, where pi(λ) = (−1)i det(Ji − λI)

∏i
j=1 β j

.

From the expression of Lanczos polynomial we have the following corollary specifying the sign of
the polynomial at specific points.

Corollary 18. Assume i < N. If i is odd, then pi(λmin) < 0; for even i, pi(λmin) > 0, while pi(λmax) > 0 for
any i < N.

Proof. Since Ji = V>i AVi is similar to A, its spectrum is bounded by λmin and λmax from left and right.
Thus, Ji − λmin is positive semi-definite, and Ji − λmax is negative semi-definite. Taking (−1)i into
consideration we will get the desired conclusions.

We are ready to state our main result that compares (right) Gauss-Radau with Gauss quadrature.

Theorem 19 (Thm. 4 in the main text). Let i < N. Then, grr
i gives better bounds than gi but worse bounds

than gi+1; more precisely,
gi ≤ grr

i ≤ gi+1, i < N. (B.1)

Proof. We prove inequality (B.1) using the recurrences satisfied by gi and grr
i (see Alg. 1)

21

Upper bound: grr
i ≤ gi+1. The iterative quadrature algorithm uses the recursive updates

grr
i = gi +

β2
i c2

i
δi(α

rr
i δi − β2

i)
,

gi+1 = gi +
β2

i c2
i

δi(αi+1δi − β2
i)

.

It suffices to thus compare αrr
i and αi+1. The three-term recursion for Lanczos polynomials shows that

βi+1 pi+1(λmax) = (λmax − αi+1)pi(λmax)− βi pi−1(λmax) > 0,
βi+1 p∗i+1(λmax) = (λmax − αrr

i)pi(λmax)− βi pi−1(λmax) = 0,

where pi+1 is the original Lanczos polynomial, and p∗i+1 is the modified polynomial that has λmax as a
root. Noting that pi(λmax) > 0, we see that αi+1 ≤ αrr

i . Moreover, from Thm. 16 we know that the gi’s
are monotonically increasing, whereby δi(αi+1δi − β2

i) > 0. It follows that

0 < δi(αi+1δi − β2
i) ≤ δi(α

rr
i δi − β2

i),

and from this inequality it is clear that grr
i ≤ gi+1.

Lower-bound: gi ≤ grr
i . Since β2

i c2
i ≥ 0 and δi(α

rr
i δi − β2

i) ≥ δi(αi+1δi − β2
i) > 0, we readily obtain

gi ≤ gi +
β2

i c2
i

δi(α
rr
i δi − β2

i)
= grr

i .

Combining Thm. 19 with the convergence rate of relative error for Gauss quadrature (Thm. 14)
immediately yields the following convergence rate for right Gauss-Radau quadrature:

Theorem 20 (Relative error of right Gauss-Radau, Thm. 5 in the main text). For each i, the right Gauss-
Radau grr

i iterates satisfy
gN − grr

i
gN

≤ 2
(√κ − 1√

κ + 1

)i
.

This results shows that with the same number of iterations, right Gauss-Radau gives superior
approximation over Gauss quadrature, though they share the same relative error convergence rate.

Our second main result compares Gauss-Lobatto with (left) Gauss-Radau quadrature.
Theorem 21 (Thm. 6 in the main text). Let i < N. Then, glr

i gives better upper bounds than glo
i but worse

than glo
i+1; more precisely,

glo
i+1 ≤ glr

i ≤ glo
i , i < N.

Proof. We prove these inequalities using the recurrences for glr
i and glo

i from Alg. 5.

glr
i ≤ glo

i : From Alg. 5 we observe that αlo
i = λmin +

(βlo
i)2

δlr
i

. Thus we can write glr
i and glo

i as

glr
i = gi +

β2
i c2

i

δi(α
lr
i δi − β2

i)
= gi +

β2
i c2

i

λminδ2
i + β2

i (δ
2
i /δlr

i − δi)

glo
i = gi +

(βlo
i)

2c2
i

δi(α
lo
i δi − (βlo

i)
2)

= gi +
(βlo

i)
2c2

i

λminδ2
i + (βlo

i)
2(δ2

i /δlr
i − δi)

To compare these quantities, as before it is helpful to begin with the original three-term recursion for
the Lanczos polynomial, namely

βi+1 pi+1(λ) = (λ− αi+1)pi(λ)− βi pi−1(λ).

22

In the construction of Gauss-Lobatto, to make a new polynomial of order i + 1 that has roots λmin and
λmax, we add σ1 pi(λ) and σ2 pi−1(λ) to the original polynomial to ensure{

βi+1 pi+1(λmin) + σ1 pi(λmin) + σ2 pi−1(λmin) = 0,
βi+1 pi+1(λmax) + σ1 pi(λmax) + σ2 pi−1(λmax) = 0.

Since βi+1, pi+1(λmax), pi(λmax) and pi−1(λmax) are all greater than 0, σ1 pi(λmax) + σ2 pi−1(λmax) < 0.
To determine the sign of polynomials at λmin, consider the two cases:

1. Odd i. In this case pi+1(λmin) > 0, pi(λmin) < 0, and pi−1(λmin) > 0;

2. Even i. In this case pi+1(λmin) < 0, pi(λmin) > 0, and pi−1(λmin) < 0.

Thus, if S = (sgn(σ1), sgn(σ2)), where the signs take values in {0,±1}, then S 6= (1, 1), S 6= (−1, 1) and
S 6= (0, 1). Hence, σ2 ≤ 0 must hold, and thus (βlo

i)
2 = (βi − σ2)

2 ≥ β2
i given that β2

i > 0 for i < N.
Using (βlo

i)
2 ≥ β2

i with λminc2
i (δi)

2 ≥ 0, an application of monotonicity of the univariate function
g(x) = ax

b+cx for ab ≥ 0 to the recurrences defining glr
i and glo

i yields the desired inequality glr
i ≤ glo

i .
glo

i+1 ≤ glr
i : From recursion formulas we have

glr
i = gi +

β2
i c2

i

δi(α
lr
i δi − β2

i)
,

glo
i+1 = gi+1 +

(βlo
i+1)

2c2
i+1

δi+1(α
lo
i+1δi+1 − (βlo

i+1)
2)

.

Establishing glr
i ≥ glo

i+1 thus amounts to showing that (noting the relations among gi, glr
i and glo

i):

β2
i c2

i

δi(α
lr
i δi − β2

i)
−

β2
i c2

i
δi(αi+1δi − β2

i)
≥

(βlo
i+1)

2c2
i+1

δi+1(α
lo
i+1δi+1 − (βlo

i+1)
2)

⇐⇒
β2

i c2
i

δi(α
lr
i δi − β2

i)
−

β2
i c2

i
δi(αi+1δi − β2

i)
≥

(βlo
i+1)

2c2
i β2

i

(δi)2δi+1(α
lo
i+1δi+1 − (βlo

i+1)
2)

⇐⇒ 1
αlr

i δi − β2
i
− 1

αi+1δi − β2
i
≥

(βlo
i+1)

2

δiδi+1(α
lo
i+1δi+1 − (βlo

i+1)
2)

⇐⇒ 1
(αi+1 − δlr

i+1)− β2
i /δi

− 1
αi+1 − β2

i /δi
≥ 1

δi+1(α
lo
i+1δi+1/(βlo

i+1)
2 − 1)

(Lemma 23)

⇐⇒ 1
δi+1 − δlr

i+1
− 1

δi+1
≥ 1

δi+1(
λminδi+1
(βlo

i+1)
2 +

δi+1
δlr

i+1
− 1)

⇐⇒ λminδi+1

(βlo
i+1)

2
+

δi+1

δlr
i+1
− 1 ≥ δi+1

δlr
i+1
− 1

⇐⇒ λminδi+1

(βlo
i+1)

2
≥ 0,

where the last inequality is obviously true; hence the proof is complete.

In summary, we have the following corollary for all the four quadrature rules:

Corollary 22 (Monotonicity of Lower and Upper Bounds, Corr. 7 in the main text). As the iteration
proceeds, gi and grr

i gives increasingly better asymptotic lower bounds and glr
i and glo

i gives increasingly better
upper bounds, namely

gi ≤ gi+1; grr
i ≤ grr

i+1

glr
i ≥ glr

i+1; glo
i ≥ glo

i+1.

23

Proof. Directly drawn from Thm. 16, Thm. 19 and Thm. 21.

Before proceeding further to our analysis of convergence rates of left Gauss-Radau and Gauss-
Lobatto, we note two technical results that we will need.

Lemma 23. Let αi+1 and αlr
i be as in Alg. 1. The difference ∆i+1 = αi+1 − αlr

i satisfies ∆i+1 = δlr
i+1.

Proof. From the Lanczos polynomials in the definition of left Gauss-Radau quadrature we have

βi+1 p∗i+1(λmin) =
(
λmin − αlr

i
)

pi(λmin)− βi pi−1(λmin)

=
(
λmin − (αi+1 − ∆i+1)

)
pi(λmin)− βi pi−1(λmin)

= βi+1 pi+1(λmin) + ∆i+1 pi(λmin) = 0.

Rearrange this equation to write ∆i+1 = −βi+1
pi+1(λmin)

pi(λmin)
, which can be further rewritten as

∆i+1
Thm. 17

= −βi+1
(−1)i+1det(Ji+1 − λmin I)/ ∏i+1

j=1 β j

(−1)idet(Ji − λmin I)/ ∏i
j=1 β j

=
det(Ji+1 − λmin I)

det(Ji − λmin I)
= δlr

i+1.

Remark 24. Lemma 23 has an implication beyond its utility for the subsequent proofs: it provides a
new way of calculating αi+1 given the quantities δlr

i+1 and αlr
i ; this saves calculation in Alg. 5.

The following lemma relates δi to δlr
i , which will prove useful in subsequent analysis.

Lemma 25. Let δlr
i and δi be computed in the i-th iteration of Alg. 1. Then, we have the following:

δlr
i < δi, (B.2)

δlr
i

δi
≤ 1− λmin

λN
. (B.3)

Proof. We prove (B.2) by induction. Since λmin > 0, δ1 = α1 > λmin and δlr
1 = α− λmin we know that

δlr
1 < δ1. Assume that δlr

i < δi is true for all i ≤ k and considering the (k + 1)-th iteration:

δlr
k+1 = αk+1 − λmin −

β2
k

δlr
k
< αk+1 −

β2
k

δk
= δk+1.

To prove (B.3), simply observe the following

δlr
i

δi
=

αi − λmin − β2
i−1/δlr

i−1

αi − β2
i−1/δi−1

(B.2)
≤ αi − λmin

αi
≤ 1− λmin

λN
.

With aforementioned lemmas we will be able to show how fast the difference between glr
i and gi

decays. Note that glr
i gives an upper bound on the objective while gi gives a lower bound.

Lemma 26. The difference between glr
i and gi decreases linearly. More specifically we have

glr
i − gi ≤ 2κ+(

√
κ − 1√
κ + 1

)igN

where κ+ = λN/λmin and κ is the condition number of A, i.e., κ = λN/λ1.

24

Proof. We rewrite the difference glr
i − gi as follows

glr
i − gi =

β2
i c2

i

δi(α
lr
i δi − β2

i)

=
β2

i c2
i

δi(αi+1δi − β2
i)

δi(αi+1δi − β2
i)

δi(α
lr
i δi − β2

i)

=
β2

i c2
i

δi(αi+1δi − β2
i)

1(
αlr

i − β2
i /δi

)/(
αi+1 − β2

i /δi
)

=
β2

i c2
i

δi(αiδi − β2
i)

1
1− ∆i+1/δi+1

,

where ∆i+1 = αi+1 − αlr
i . Next, recall that gN−gi

gN
≤ 2

(√
κ−1√
κ+1

)i
. Since gi lower bounds gN , we have

(
1− 2

(√κ − 1√
κ + 1

)i)
gN ≤ gi ≤ gN ,(

1− 2
(√κ − 1√

κ + 1

)i+1)
gN ≤ gi+1 ≤ gN .

Thus, we can conclude that

β2
i c2

i
δi(αiδi − β2

i)
= gi+1 − gi ≤ 2

(√κ − 1√
κ + 1

)i
gN .

Now we focus on the term
(
1− ∆i+1/δi+1

)−1. Using Lemma 23 we know that ∆i+1 = δlr
i+1. Hence,

1−∆i+1/δi+1 = 1− δlr
i+1/δi+1

≥ 1− (1− λmin/λN) = λmin/λN ,
1

κ+
.

Finally we have

glr
i − gi =

β2
i c2

i
δi(αiδi − β2

i)

1
1− ∆i+1/δi+1

≤ 2κ+
(√κ − 1√

κ + 1

)i
gN .

Theorem 27 (Relative error of left Gauss-Radau, Thm. 8 in the main text). For left Gauss-Radau quadrature
where the preassigned node is λmin, we have the following bound on relative error:

glr
i − gN

gN
≤ 2κ+

(√κ − 1√
κ + 1

)i
,

where κ+ := λN/λmin, i < N.

Proof. Write glr
i = gi + (glr

i − gi). Since gi ≤ gN , using Lemma 26 to bound the second term we obtain

glr
i ≤ gN + 2κ+

(√κ − 1√
κ + 1

)i
gN ,

from which the claim follows upon rearrangement.

Due to the relations between left Gauss-Radau and Gauss-Lobatto, we have the following corollary:

25

Corollary 28 (Relative error of Gauss-Lobatto, Corr. 9 in the main text). For Gauss-Lobatto quadrature,
we have the following bound on relative error:

glo
i − gN

gN
≤ 2κ+

(√κ − 1√
κ + 1

)i−1
, (B.4)

where κ+ := λN/λmin and i < N.

C Generalization: Symmetric Matrices

In this section we consider the case where u lies in the column space of several top eigenvectors of
A, and discuss how the aforementioned theorems vary. In particular, note that the previous analysis
assumes that A is positive definite. With our analysis in this section we relax this assumption to the
more general case where A is symmetric with simple eigenvalues, though we require u to lie in the
space spanned by eigenvectors of A corresponding to positive eigenvalues.

We consider the case where A is symmetric and has the eigendecomposition of A = QΛQ> =

∑N
i=1 λiqiq>i where λi’s are eigenvalues of A increasing with i and qi’s are corresponding eigenvectors.

Assume that u lies in the column space spanned by top k eigenvectors of A where all these k eigenvec-
tors correspond to positive eigenvalues. Namely we have u ∈ Span{{qi}N

i=N−k+1} and 0 < λN−k+1.
Since we only assume that A is symmetric, it is possible that A is singular and thus we consider the

value of u>A†u, where A† is the pseudo-inverse of A. Due to the constraints on u we have

u>A†u = u>QΛ†Q>u = u>QkΛ†
k Q>k u = u>B†u,

where B = ∑N
i=N−k+1 λiqiq>i . Namely, if u lies in the column space spanned by the top k eigenvectors of

A then it is equivalent to substitute A with B, which is the truncated version of A at top k eigenvalues
and corresponding eigenvectors.

Another key observation is that, given that u lies only in the space spanned by {qi}N
i=N−k+1, the

Krylov space starting at u becomes

Span{u, Au, A2u, . . .} = Span{u, Bu, B2u, . . . , Bk−1u} (C.1)

This indicates that Lanczos iteration starting at matrix A and vector u will finish constructing the
corresponding Krylov space after the k-th iteration. Thus under this condition, Alg. 1 will run at most
k iterations and then stop. At that time, the eigenvalues of Jk are exactly the eigenvalues of B, thus
they are exactly {λi}N

i=N−k+1 of A. Using similar proof as in Lemma 15, we can obtain the following
generalized exactness result.

Corollary 29 (Generalized Exactness). gk, grr
k and glr

k are exact for u>A†u = u>B†u, namely

gk = grr
k = glr

k = u>A†u = u>B†u.

The monotonicity and the relations between bounds given by various Gauss-type quadratures will
still be the same as in the original case in Section 4, but the original convergence rate cannot apply in
this case because now we probably have λmin(B) = 0, making κ undefined. This crash of convergence
rate results from the crash of the convergence of the corresponding conjugate gradient algorithm for
solving Ax = u. However, by looking at the proof of, e.g., [56], and by noting that λ1(B) = . . . =
λN−k(B) = 0, with a slight modification of the proof we actually obtain the bound

‖εi‖2
A ≤ min

Pi
max

λ∈{λi}N
i=N−k+1

[Pi(λ)]
2‖ε0‖2

A,

where Pi is a polynomial of order i. By using properties of Chebyshev polynomials and following the
original proof (e.g., [29] or [56]) we obtain the following lemma for conjugate gradient.

26

Lemma 30. Let εk be as before (for conjugate gradient). Then,

‖εk‖A ≤ 2
(√κ′ − 1√

κ′ + 1
)k‖ε0‖A, where κ′ := λN/λN−k+1.

Following this new convergence rate and connections between conjugate gradient, Lanczos itera-
tions and Gauss quadrature mentioned in Section 4, we have the following convergence bounds.

Corollary 31 (Convergence Rate for Special Case). Under the above assumptions on A and u, due to the
connection Between Gauss quadrature, Lanczos algorithm and Conjugate Gradient, the relative convergence rates
of gi, grr

i , glr
i and glo

i are given by

gk − gi
gk

≤ 2
(√κ′ − 1√

κ′ + 1

)i

gk − grr
i

gk
≤ 2

(√κ′ − 1√
κ′ + 1

)i

glr
i − gk

gk
≤ 2κ′m

(√κ′ − 1√
κ′ + 1

)i

glo
i − gk

gk
≤ 2κ′m

(√κ′ − 1√
κ′ + 1

)i
,

where κ′m = λN/λ′min and 0 < λ′min < λN−k+1 is a lowerbound for nonzero eigenvalues of B.

D Accelerating MCMC for k-Dpp

We present details of a Retrospective Markov Chain Monte Carlo (MCMC) in Alg. 6 and Alg. 7 that
samples for efficiently drawing samples from a k-Dpp, by accelerating it using our results on Gauss-
type quadratures.

Algorithm 6 Gauss-kDpp (L, k)
Require: L the kernel matrix we want to sample Dpp from, k the size of subset and Y = [N] the ground

set
Ensure: Y sampled from exact kDpp (L) where |Y| = k

Randomly Initialize Y ⊆ Y where |Y| = k
while not mixed do

Pick v ∈ Y and u ∈ Y\Y uniformly randomly
Pick p ∈ (0, 1) uniformly randomly
Y′ = Y\{v}
Get lower and upper bounds λmin, λmax of the spectrum of LY′

if k-Dpp-JudgeGauss(pLv,v − Lu,u, p, LY′ ,u, LY′ ,v, λmin, λmax) = True then
Y = Y′ ∪ {u}

end if
end while

E Accelerating Stochastic Double Greedy

We present details of Retrospective Stochastic Double Greedy in Alg. 8 and Alg. 9 that efficiently select a
subset Y ∈ Y that approximately maximize log det(LY).

27

Algorithm 7 kDpp-JudgeGauss(t, p, u, v, A, λmin, λmax)
Require: t the target value, p the scaling factor, u, v and A the corresponding vectors and matrix, λmin

and λmax lower and upper bounds for the spectrum of A
Ensure: Return True if t < p(v>A−1v)− u>A−1u, False if otherwise

u−1 = 0, u0 = u/‖u‖, iu = 1, βu
0 = 0, du = ∞

v−1 = 0, v0 = v/‖v‖, iv = 1, βv
0 = 0, dv = ∞

while True do
if du > pdv then

Run one more iteration of Gauss-Radau on u>A−1u to get tighter (glr)u and (grr)u

du = (glr)u − (grr)u

else
Run one more iteration of Gauss-Radau on v>A−1v to get tighter (glr)v and (grr)v

dv = (glr)v − (grr)v

end if
if t < p‖v‖2(grr)v − ‖u‖2(glr)u then

Return True
else if t ≥ p‖v‖2(glr)v − ‖u‖2(grr)u then

Return False
end if

end while

Algorithm 8 Gauss-Dg (L)
Require: L the kernel matrix and Y = [N] the ground set
Ensure: X ∈ Y that approximately maximize log det(LY)

X0 = ∅, Y0 = Y
for i = 1, 2, . . . , N do

Y′i = Yi−1\{i}
Sample p ∈ (0, 1) uniformly randomly
Get lower and upper bounds λ−min, λ−max, λ+

min, λ+
max of the spectrum of LXi−1 and LY′i

respectively
if Dg-JudgeGauss(LXi−1 , LY′i

, LXi−1,i, LY′i ,i, Li,i, p, λ−min, λ−max, λ+
min, λ+

max) = True then
Xi = Xi−1 ∪ {i}

else
Yi = Y′i

end if
end for

28

Algorithm 9 Dg-JudgeGauss(A, B, u, v, t, p, λA
min, λA

max, λB
min, λB

max)
Require: t the target value, p the scaling factor, u, v, A and B the corresponding vectors and matrix,

λA
min, λA

max, λB
min, λB

max lower and upper bounds for the spectrum of A and B
Ensure: Return True if p| log(t− u>A−1u)|+ ≤ (1− p)| − log(t− v>B−1v)|+, False if otherwise

du = ∞, dv = ∞
while True do

if pdu > (1− p)dv then
Run one more iteration of Gauss-Radau on u>A−1u to get tighter lower and upper bounds lu,
uu for | log(t− u>A−1u)|+
du = uu − lu

else
Run one more iteration of Gauss-Radau on v>B−1v to get tighter lower and upper bounds lv,
uv for | log(t− v>B−1v)|+
dv = uv − lv

end if
if puu ≤ (1− p)lv then

Return True
else if plu > (1− p)uv then

Return False
end if

end while

29

	1 Introduction
	2 Motivating Applications
	3 Background on Gauss Quadrature
	4 Main Theoretical Results
	4.1 Lower Bounds
	4.2 Upper Bounds
	4.3 Convergence rates
	4.4 Empirical Evidence

	5 Algorithmic Results and Applications
	5.1 Retrospective Markov Chain (k-)Dpp
	5.2 Retrospective Double Greedy Algorithm
	5.3 Empirical Evidence
	5.3.1 Synthetic Datasets
	5.3.2 Real Datasets

	5.4 Numerical details

	6 Conclusion
	A Further Background on Gauss Quadrature
	A.1 Selecting weights and nodes
	A.2 Gauss Quadrature Lanczos (GQL)
	A.3 Relation with Conjugate Gradient

	B Proofs for Main Theoretical Results
	C Generalization: Symmetric Matrices
	D Accelerating MCMC for k-Dpp
	E Accelerating Stochastic Double Greedy

