54 research outputs found

    Densest Subgraph in Dynamic Graph Streams

    Full text link
    In this paper, we consider the problem of approximating the densest subgraph in the dynamic graph stream model. In this model of computation, the input graph is defined by an arbitrary sequence of edge insertions and deletions and the goal is to analyze properties of the resulting graph given memory that is sub-linear in the size of the stream. We present a single-pass algorithm that returns a (1+ϵ)(1+\epsilon) approximation of the maximum density with high probability; the algorithm uses O(\epsilon^{-2} n \polylog n) space, processes each stream update in \polylog (n) time, and uses \poly(n) post-processing time where nn is the number of nodes. The space used by our algorithm matches the lower bound of Bahmani et al.~(PVLDB 2012) up to a poly-logarithmic factor for constant ϵ\epsilon. The best existing results for this problem were established recently by Bhattacharya et al.~(STOC 2015). They presented a (2+ϵ)(2+\epsilon) approximation algorithm using similar space and another algorithm that both processed each update and maintained a (4+ϵ)(4+\epsilon) approximation of the current maximum density in \polylog (n) time per-update.Comment: To appear in MFCS 201

    Maximum Matching in Turnstile Streams

    Get PDF
    We consider the unweighted bipartite maximum matching problem in the one-pass turnstile streaming model where the input stream consists of edge insertions and deletions. In the insertion-only model, a one-pass 22-approximation streaming algorithm can be easily obtained with space O(nlogn)O(n \log n), where nn denotes the number of vertices of the input graph. We show that no such result is possible if edge deletions are allowed, even if space O(n3/2δ)O(n^{3/2-\delta}) is granted, for every δ>0\delta > 0. Specifically, for every 0ϵ10 \le \epsilon \le 1, we show that in the one-pass turnstile streaming model, in order to compute a O(nϵ)O(n^{\epsilon})-approximation, space Ω(n3/24ϵ)\Omega(n^{3/2 - 4\epsilon}) is required for constant error randomized algorithms, and, up to logarithmic factors, space O(n22ϵ)O( n^{2-2\epsilon} ) is sufficient. Our lower bound result is proved in the simultaneous message model of communication and may be of independent interest

    Time lower bounds for nonadaptive turnstile streaming algorithms

    Full text link
    We say a turnstile streaming algorithm is "non-adaptive" if, during updates, the memory cells written and read depend only on the index being updated and random coins tossed at the beginning of the stream (and not on the memory contents of the algorithm). Memory cells read during queries may be decided upon adaptively. All known turnstile streaming algorithms in the literature are non-adaptive. We prove the first non-trivial update time lower bounds for both randomized and deterministic turnstile streaming algorithms, which hold when the algorithms are non-adaptive. While there has been abundant success in proving space lower bounds, there have been no non-trivial update time lower bounds in the turnstile model. Our lower bounds hold against classically studied problems such as heavy hitters, point query, entropy estimation, and moment estimation. In some cases of deterministic algorithms, our lower bounds nearly match known upper bounds

    Tight Lower Bound for Linear Sketches of Moments

    Get PDF
    The problem of estimating frequency moments of a data stream has attracted a lot of attention since the onset of streaming algorithms [AMS99]. While the space complexity for approximately computing the pthp^{\rm th} moment, for p(0,2]p\in(0,2] has been settled [KNW10], for p>2p>2 the exact complexity remains open. For p>2p>2 the current best algorithm uses O(n12/plogn)O(n^{1-2/p}\log n) words of space [AKO11,BO10], whereas the lower bound is of Ω(n12/p)\Omega(n^{1-2/p}) [BJKS04]. In this paper, we show a tight lower bound of Ω(n12/plogn)\Omega(n^{1-2/p}\log n) words for the class of algorithms based on linear sketches, which store only a sketch AxAx of input vector xx and some (possibly randomized) matrix AA. We note that all known algorithms for this problem are linear sketches.Comment: In Proceedings of the 40th International Colloquium on Automata, Languages and Programming (ICALP), Riga, Latvia, July 201

    On Deterministic Sketching and Streaming for Sparse Recovery and Norm Estimation

    Full text link
    We study classic streaming and sparse recovery problems using deterministic linear sketches, including l1/l1 and linf/l1 sparse recovery problems (the latter also being known as l1-heavy hitters), norm estimation, and approximate inner product. We focus on devising a fixed matrix A in R^{m x n} and a deterministic recovery/estimation procedure which work for all possible input vectors simultaneously. Our results improve upon existing work, the following being our main contributions: * A proof that linf/l1 sparse recovery and inner product estimation are equivalent, and that incoherent matrices can be used to solve both problems. Our upper bound for the number of measurements is m=O(eps^{-2}*min{log n, (log n / log(1/eps))^2}). We can also obtain fast sketching and recovery algorithms by making use of the Fast Johnson-Lindenstrauss transform. Both our running times and number of measurements improve upon previous work. We can also obtain better error guarantees than previous work in terms of a smaller tail of the input vector. * A new lower bound for the number of linear measurements required to solve l1/l1 sparse recovery. We show Omega(k/eps^2 + klog(n/k)/eps) measurements are required to recover an x' with |x - x'|_1 <= (1+eps)|x_{tail(k)}|_1, where x_{tail(k)} is x projected onto all but its largest k coordinates in magnitude. * A tight bound of m = Theta(eps^{-2}log(eps^2 n)) on the number of measurements required to solve deterministic norm estimation, i.e., to recover |x|_2 +/- eps|x|_1. For all the problems we study, tight bounds are already known for the randomized complexity from previous work, except in the case of l1/l1 sparse recovery, where a nearly tight bound is known. Our work thus aims to study the deterministic complexities of these problems

    Sublinear Estimation of Weighted Matchings in Dynamic Data Streams

    Full text link
    This paper presents an algorithm for estimating the weight of a maximum weighted matching by augmenting any estimation routine for the size of an unweighted matching. The algorithm is implementable in any streaming model including dynamic graph streams. We also give the first constant estimation for the maximum matching size in a dynamic graph stream for planar graphs (or any graph with bounded arboricity) using O~(n4/5)\tilde{O}(n^{4/5}) space which also extends to weighted matching. Using previous results by Kapralov, Khanna, and Sudan (2014) we obtain a polylog(n)\mathrm{polylog}(n) approximation for general graphs using polylog(n)\mathrm{polylog}(n) space in random order streams, respectively. In addition, we give a space lower bound of Ω(n1ε)\Omega(n^{1-\varepsilon}) for any randomized algorithm estimating the size of a maximum matching up to a 1+O(ε)1+O(\varepsilon) factor for adversarial streams
    corecore