25,529 research outputs found

    Minimum Entropy Orientations

    Full text link
    We study graph orientations that minimize the entropy of the in-degree sequence. The problem of finding such an orientation is an interesting special case of the minimum entropy set cover problem previously studied by Halperin and Karp [Theoret. Comput. Sci., 2005] and by the current authors [Algorithmica, to appear]. We prove that the minimum entropy orientation problem is NP-hard even if the graph is planar, and that there exists a simple linear-time algorithm that returns an approximate solution with an additive error guarantee of 1 bit. This improves on the only previously known algorithm which has an additive error guarantee of log_2 e bits (approx. 1.4427 bits).Comment: Referees' comments incorporate

    Power-free values, large deviations, and integer points on irrational curves

    Get PDF
    Let fZ[x]f\in \mathbb{Z}\lbrack x\rbrack be a polynomial of degree d3d\geq 3 without roots of multiplicity dd or (d1)(d-1). Erd\H{o}s conjectured that, if ff satisfies the necessary local conditions, then f(p)f(p) is free of (d1)(d-1)th powers for infinitely many primes pp. This is proved here for all ff with sufficiently high entropy. The proof serves to demonstrate two innovations: a strong repulsion principle for integer points on curves of positive genus, and a number-theoretical analogue of Sanov's theorem from the theory of large deviations.Comment: 39 pages; rather major revision, with strengthened and generalized statement

    A Tight Excess Risk Bound via a Unified PAC-Bayesian-Rademacher-Shtarkov-MDL Complexity

    Get PDF
    We present a novel notion of complexity that interpolates between and generalizes some classic existing complexity notions in learning theory: for estimators like empirical risk minimization (ERM) with arbitrary bounded losses, it is upper bounded in terms of data-independent Rademacher complexity; for generalized Bayesian estimators, it is upper bounded by the data-dependent information complexity (also known as stochastic or PAC-Bayesian, KL(posteriorprior)\mathrm{KL}(\text{posterior} \operatorname{\|} \text{prior}) complexity. For (penalized) ERM, the new complexity reduces to (generalized) normalized maximum likelihood (NML) complexity, i.e. a minimax log-loss individual-sequence regret. Our first main result bounds excess risk in terms of the new complexity. Our second main result links the new complexity via Rademacher complexity to L2(P)L_2(P) entropy, thereby generalizing earlier results of Opper, Haussler, Lugosi, and Cesa-Bianchi who did the log-loss case with LL_\infty. Together, these results recover optimal bounds for VC- and large (polynomial entropy) classes, replacing localized Rademacher complexity by a simpler analysis which almost completely separates the two aspects that determine the achievable rates: 'easiness' (Bernstein) conditions and model complexity.Comment: 38 page
    corecore