23 research outputs found

    A Constant-Size Signature Scheme with a Tighter Reduction from the CDH Assumption

    Get PDF
    We present a signature scheme with the tightest security-reduction among known constant-size signature schemes secure under the computational Diffie-Hellman (CDH) assumption. It is important to reduce the security-reduction loss of a cryptosystem, which enables choosing of a smaller security parameter without compromising security; hence, enabling constant-size signatures for cryptosystems and faster computation. The tightest security reduction far from the CDH assumption is O(q)\mathcal{O}(q), presented by Hofheinz et al., where qq is the number of signing queries. They also proved that the security loss of O(q)\mathcal{O}(q) is optimal if signature schemes are ``re-randomizable . In this paper, we revisit the non-re-randomizable signature scheme proposed by Bohl et al. Their signature scheme is the first that is fully secure under the CDH assumption and has a compact public key. However, they constructed the scheme with polynomial-order security-reduction loss. We first constructed a new existentially unforgeable againt extended random-message attack (EUF-XRMA) secure scheme based on Bohl et al.\u27s scheme, which has tighter security reduction of O(q/d)\mathcal{O}(q/d) to the CDH assumption, where dd is the number of group elements in a verification key. We then transformed the EUF-XRMA secure signature scheme into an existentially unforgeable against adaptively chosen-message attack (EUF-CMA) secure one using Abe et al.\u27s technique. In this construction, no pseudorandom function, which results in increase of reduction loss, is used, and the above reduction loss can be achieved. Moreover, a tag can be generated more efficiently than Bohl et al.\u27s signature scheme, which results in smaller computation. Consequently, our EUF-CMA secure scheme has tighter security reduction to the CDH assumption than any previous schemes

    LiS: Lightweight Signature Schemes for continuous message authentication in cyber-physical systems

    Get PDF
    Agency for Science, Technology and Research (A*STAR) RIE 202

    Practical Compact E-Cash with Arbitrary Wallet Size

    Get PDF
    Compact e-cash schemes allow users to withdraw a wallet containing KK coins and to spend each coin unlinkably. We present the first compact e-cash scheme with arbitrary wallet size k≤Kk \leq K while the spending protocol is of constant time and space complexity. Known compact e-cash schemes are constructed from either verifiable random functions or bounded accumulators. We use both building blocks to construct the new scheme which is secure under the qq-SDH, the yy-DDHI and the SXDH assumptions in the random oracle model

    Short Lattice Signature Scheme with Tighter Reduction under Ring-SIS Assumption

    Get PDF
    We propose a short signature scheme under the ring-SIS assumption in the standard model. Specifically, by revisiting an existing construction [Ducas and Micciancio, CRYPTO 2014], we demonstrate lattice-based signatures with improved reduction loss. As far as we know, there are no ways to use multiple tags in the signature simulation of security proof in the lattice tag-based signatures. We address the tag-collision possibility in the lattice setting, which improves reduction loss. Our scheme generates tags from messages by constructing a scheme under a mild security condition that is existentially unforgeable against random message attack with auxiliary information. Thus our scheme can reduce the signature size since it does not need to send tags with the signatures. Our scheme has short signature sizes of (1) and achieves tighter reduction loss than that of Ducas et al.’s scheme. Our proposed scheme has two variants. Our scheme with one property has tighter reduction and the same verification key size of (log ) as that of Ducas et al.’s scheme, where is the security parameter. Our scheme with the other property achieves much tighter reduction loss of (/) and verification key size of (), where is the number of signing queries

    LARP: A Lightweight Auto-Refreshing Pseudonym Protocol for V2X

    Get PDF
    Vehicle-to-everything (V2X) communication is the key enabler for emerging intelligent transportation systems. Applications built on top of V2X require both authentication and privacy protection for the vehicles. The common approach to meet both requirements is to use pseudonyms which are short-term identities. However, both industrial standards and state-of-the-art research are not designed for resource-constrained environments. In addition, they make a strong assumption about the security of the vehicle\u27s on-board computation units. In this paper, we propose a lightweight auto-refreshing pseudonym protocol LARP for V2X. LARP supports efficient operations for resource-constrained devices, and provides security even when parts of the vehicle are compromised. We provide formal security proof showing that the protocol is secure. We conduct experiments on a Raspberry Pi 4. The results demonstrate that LARP is feasible and practical

    Programmable hash functions and their applications

    Get PDF
    We introduce a new combinatorial primitive called *programmable hash functions* (PHFs). PHFs can be used to *program* the output of a hash function such that it contains solved or unsolved discrete logarithm instances with a certain probability. This is a technique originally used for security proofs in the random oracle model. We give a variety of *standard model* realizations of PHFs (with different parameters). The programmability makes PHFs a suitable tool to obtain black-box proofs of cryptographic protocols when considering adaptive attacks. We propose generic digital signature schemes from the strong RSA problem and from some hardness assumption on bilinear maps that can be instantiated with any PHF. Our schemes offer various improvements over known constructions. In particular, for a reasonable choice of parameters, we obtain short standard model digital signatures over bilinear maps

    On the Security of the PKCS#1 v1.5 Signature Scheme

    Get PDF
    The RSA PKCS#1 v1.5 signature algorithm is the most widely used digital signature scheme in practice. Its two main strengths are its extreme simplicity, which makes it very easy to implement, and that verification of signatures is significantly faster than for DSA or ECDSA. Despite the huge practical importance of RSA PKCS#1 v1.5 signatures, providing formal evidence for their security based on plausible cryptographic hardness assumptions has turned out to be very difficult. Therefore the most recent version of PKCS#1 (RFC 8017) even recommends a replacement the more complex and less efficient scheme RSA-PSS, as it is provably secure and therefore considered more robust. The main obstacle is that RSA PKCS#1 v1.5 signatures use a deterministic padding scheme, which makes standard proof techniques not applicable. We introduce a new technique that enables the first security proof for RSA-PKCS#1 v1.5 signatures. We prove full existential unforgeability against adaptive chosen-message attacks (EUF-CMA) under the standard RSA assumption. Furthermore, we give a tight proof under the Phi-Hiding assumption. These proofs are in the random oracle model and the parameters deviate slightly from the standard use, because we require a larger output length of the hash function. However, we also show how RSA-PKCS#1 v1.5 signatures can be instantiated in practice such that our security proofs apply. In order to draw a more complete picture of the precise security of RSA PKCS#1 v1.5 signatures, we also give security proofs in the standard model, but with respect to weaker attacker models (key-only attacks) and based on known complexity assumptions. The main conclusion of our work is that from a provable security perspective RSA PKCS#1 v1.5 can be safely used, if the output length of the hash function is chosen appropriately

    Attribute-based Anonymous Credential: Optimization for Single-Use and Multi-Use

    Get PDF
    User attributes can be authenticated by an attribute-based anonymous credential while keeping the anonymity of the user. Most attribute-based anonymous credential schemes are designed specifically for either multi-use or single-use. In this paper, we propose a unified attribute-based anonymous credential system, in which users always obtain the same format of credential from the issuer. The user can choose to use it for an efficient multi-use or single-use show proof. It is a more user-centric approach than the existing schemes. Technically, we propose an interactive approach to the credential issuance protocol using a two-party computation with an additive homomorphic encryption. At the same time, it keeps the security property of impersonation resilience, anonymity, and unlinkability. Apart from the interactive protocol, we further design the show proofs for efficient single-use credentials which maintain the user anonymity

    Tightly-Secure Signatures from Chameleon Hash Functions

    Get PDF
    We give a new framework for obtaining signatures with a tight security reduction from standard hardness assumptions. Concretely, we show that any Chameleon Hash function can be transformed into a (binary) tree-based signature scheme with tight security. The transformation is in the standard model, i.e., it does not make use of any random oracle. For specific assumptions (such as RSA, Diffie-Hellman and Short Integer Solution (SIS)) we further manage to obtain a more efficient flat-tree construction. Our framework explains and generalizes most of the existing schemes as well as providing a generic means for constructing tight signature schemes based on arbitrary assumptions, which improves the standard Merkle tree transformation. Moreover, we obtain the first tightly secure signature scheme from the SIS assumption and several schemes based on Diffie-Hellman in the standard model. Some of our signature schemes can (using known techniques) be combined with Groth-Sahai proof methodology to yield tightly secure and efficient simulation-sound NIZK proofs of knowledge and CCA-secure encryption in the multi-user/-challenge setting under classical assumptions

    Algebraic partitioning: Fully compact and (almost) tightly secure cryptography

    Get PDF
    We describe a new technique for conducting ``partitioning arguments\u27\u27. Partitioning arguments are a popular way to prove the security of a cryptographic scheme. For instance, to prove the security of a signature scheme, a partitioning argument could divide the set of messages into ``signable\u27\u27 messages for which a signature can be simulated during the proof, and ``unsignable\u27\u27 ones for which any signature would allow to solve a computational problem. During the security proof, we would then hope that an adversary only requests signatures for signable messages, and later forges a signature for an unsignable one. In this work, we develop a new class of partitioning arguments from simple assumptions. Unlike previous partitioning strategies, ours is based upon an algebraic property of the partitioned elements (e.g., the signed messages), and not on their bit structure. This allows to perform the partitioning efficiently in a ``hidden\u27\u27 way, such that already a single ``slot\u27\u27 for a partitioning operation in the scheme can be used to implement many different partitionings sequentially, one after the other. As a consequence, we can construct complex partitionings out of simple basic (but algebraic) partitionings in a very space-efficient way. As a demonstration of our technique, we provide the first signature and public-key encryption schemes that achieve the following properties simultaneously: they are (almost) tightly secure under a simple assumption, and they are fully compact (in the sense that parameters, keys, and signatures, resp.~ciphertexts only comprise a constant number of group elements)
    corecore