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Abstract. We propose a short signature scheme under the ring-SIS assumption
in the standard model.† Specifically, by revisiting an existing construction [Ducas
and Micciancio, CRYPTO 2014], we demonstrate lattice-based signatures with
improved reduction loss. As far as we know, there are no ways to use multiple tags
in the signature simulation of security proof in the lattice tag-based signatures. We
address the tag-collision possibility in the lattice setting, which improves reduction
loss. Our scheme generates tags from messages by constructing a scheme under a
mild security condition that is existentially unforgeable against random message
attack with auxiliary information. Thus our scheme can reduce the signature size
since it does not need to send tags with the signatures. Our scheme has short
signature sizes of 𝑂 (1) and achieves tighter reduction loss than that of Ducas
et al.’s scheme. Our proposed scheme has two variants. Our scheme with one
property has tighter reduction and the same verification key size of 𝑂 (log 𝑛) as
that of Ducas et al.’s scheme, where 𝑛 is the security parameter. Our scheme with
the other property achieves much tighter reduction loss of𝑂 (𝑄/𝑛) and verification
key size of 𝑂 (𝑛), where 𝑄 is the number of signing queries.

1 Introduction

1.1 Background

Digital signatures are one of the most fundamental cryptographic primitives that guar-
antee authenticity of electronic documents and are an indispensable component of our
digital infrastructure. When using digital signatures, each signer has a pair of keys
consisting of one secret (signing) and one public (verification) key. A signer signs a
document with the secret key, and the document’s authenticity is publicly verifiable with
the public key.

The performance of cryptographic primitives, such as digital signatures, can be
evaluated using reduction loss relative to a difficult problem. Reduction loss is the gap in
difficulty between breaking the cryptographic primitive and solving the difficult problem.
★ Presently, the author is on loan to the National Institute of Information and Communications

Technology.
† A preliminary version of this paper was presented in [28] at ProvSec 2020.
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When there is approximately no reduction loss (i.e., when breaking the cryptographic
primitive is at least as difficult as solving the difficult problem), the cryptographic
primitive is called tightly secure. The reduction loss can have a dramatic impact on
the scheme’s parameters. Lowering the reduction loss of the cryptographic primitive
is important because this enables security parameters to be made as small as possible
without compromising security.

The model of signature schemes with a random oracle is called the random oracle
model. It is an ideal framework for discussing the security of cryptosystems, replacing
the execution of the hash function 𝐻 (·) with a query to a random oracle, the output of
which is uniformly random. In general, a signature scheme in the standard model (i.e.,
without a random oracle) is superior to that in the random oracle model under the same
condition. We now discuss digital signature schemes in the standard model.

In 1994, Shor showed that quantum computers can efficiently solve the integer factor-
ization problem and the discrete logarithm problem [39]. Post-Quantum Cryptography
(PQC), which is believed to be resistant to an attack from a quantum computer, is studied
worldwide. Lattice-based cryptography has been increasing since the original work of
Ajtai and Dwork [2, 3] and that is believed to be a promising candidate for the NIST’s
call for PQC standards [35]. In July 2020, the third-round finalists of the NIST PQC stan-
dardization are announced [36]. The finalists for digital signatures except Rainbow [16]
are all lattice-based schemes [17, 19]. Many efficient signature schemes, such as NIST
PQC finalists, are built in the random oracle model.

The assumptions used in the composition of the signature are also an important part
of the evaluation. The construction of an efficient lattice-based scheme under a standard
assumption (i.e., general assumption such as the one-wayness of trapdoor permutation
or more specific assumption such as the short integer solution (SIS) assumption) with
tight reduction loss in the standard model is desirable.

Table 1. Signature schemes under (ring) SIS assumption in standard model: 𝑛 is security param-
eter; 𝛽 is SIS parameter: 𝑄 is number of signing queries; and 𝜖, 𝛿, ℓ, 𝛼, and 𝑐 are parameters for
each scheme. Unit of size in SIS assumption is Z𝑛𝑞 and that in ring-SIS assumption is R𝑞 .

Scheme |𝑣𝑘 | |𝑠𝑘 | |𝑠𝑖𝑔 | Reduction loss Assumption 𝛽

CHKP10 [12] 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (𝑛𝑄) SIS Ω(𝑛2)
Boyen10 [10] 𝑂 (𝑛) 𝑂 (1) 𝑂 (1) 𝑂 (𝑛𝑄) SIS Ω(𝑛7/2)
BHJKSS13 [9] 𝑂 (1) 𝑂 (1) 𝑂 (log 𝑛) 𝑂 (𝑛𝑄) SIS Ω(𝑛5/2)
BKKP15 [8] 𝑂 (1) 𝑂 (1) 𝑂 (𝑛) 𝑂 (1) SIS Ω(𝑛3/2)
Alperin-Sheriff15 [4] 𝑂 (1) 𝑂 (1) 𝑂 (1) 𝑂 (𝑛𝑄) SIS Ω(𝑛11/2𝛿2𝛿)
BL16 [11] 𝑂 (𝑛) 𝑂 (1) 𝑂 (1) 𝑂 (𝑛) SIS+PRF Ω(𝑛7/2ℓ4𝑐)
DM14 [18] 𝑂 (log 𝑛) 𝑂 (1) 𝑂 (1) 𝑂

((
𝑄2

𝜖

)𝑐 )
ring-SIS Ω(𝑛7/2)

Proposed scheme
𝑂 (log 𝑛) 𝑂 (1) 𝑂 (1) 𝑂

((
𝑄
𝑛

)𝑐 )
ring-SIS Ω(𝑛7/2)with 𝐶𝑖 = ⌊𝛼𝑐𝑖⌋

Proposed scheme
𝑂 (𝑛) 𝑂 (1) 𝑂 (1) 𝑂

(
𝑄
𝑛

)
ring-SIS Ω(𝑛7/2)with 𝐶𝑖 = 𝑖
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1.2 Related Works

If a signature of lattice-based signature schemes consists of a single lattice vector, i.e.,
it increases at a rate of order 𝑂 (1), the size of the signature is called short. The direct
constructions of short lattice-based signatures were presented by Lyubashevsky and
Micciancio [31] and Gentry et al. [22]. Lyubashevsky and Micciancio proposed a prov-
ably secure one-time signature scheme in the standard model. Gentry et al. constructed
a signature scheme in the random oracle model that uses a sampling algorithm from
Gaussian distribution.

We give a comparison of post-quantum signature schemes in the standard model
in Table 1. In 2010, Cash et al. [12] provided the first lattice-based signature scheme
in the standard model by applying chameleon hash function with reduction loss of
𝑂 (𝑛𝑄), where 𝑛 is the security parameter and 𝑄 is the number of signing queries.
However, the size of signatures and secret keys of Cash et al.’s scheme are not short.
Boyen [10] proposed the vanishing trapdoor technique and constructed a short signa-
ture scheme in the standard model with reduction loss of 𝑂 (𝑛𝑄). The signature and
secret key size of Boyen’s signature is 𝑂 (1). In 2013, Böhl et al. [9] formulated the
confined guessing technique, which is an analyzing technique of security proof. Böhl et
al. [9] explored tag-based signature schemes as a means to enable security reductions
to standard computational assumptions, such as RSA, CDH, and SIS assumptions. In
a tag-based signature scheme, each signature carries tag 𝑡 that can be chosen freely.
The benefit of this additional parameterization becomes apparent when one considers
tags from a small domain: if there are only few, i.e., a polynomial number of tags,
we could try to guess the tag used in the adversary’s forgery in advance. In a signing
simulation, a challenge instance is embedded in the signature along with the tag, so
that the simulation succeeds when the guessed tag matches the tag used in the forgery.
Their scheme has verification and signing keys of size 𝑂 (1) in the standard model
with reduction loss of 𝑂 (𝑛𝑄) but longer signatures, of size 𝑂 (log 𝑛). In 2014, a new
short-signature framework using the confined guessing and vanishing trapdoor tech-
niques was proposed by Ducas and Micciancio [18]. We refer their scheme as DM14
hereafter. DM14 has relatively short verification keys of 𝑂 (log 𝑛) with reduction loss of
𝑂

((
𝑄2

𝜖

)𝑐)
for an arbitrary constant 𝑐 > 1 and adversarial advantage 𝜖 . DM14 focused

on a certain tag set and adjusted the size of tag set so that the probability of at least one
tag collision is negligible. A short-signature scheme with almost tight security in the
standard model using pseudorandom functions was proposed by Boyen and Li. [11] in
2016. Their signature scheme eliminates the reduction loss’s dependency on the number
of adversary’s queries, but their verification key is large and an additional assumption
is needed because of using pseudorandom function. A tightly secure signature scheme
with short keys in the standard model was proposed by Blazy et al. [8], but its signature
size is large. A signature scheme that has short signatures and keys was proposed by
Alperin-Sheriff [4], but its reduction loss is loose. Despite these outstanding studies,
lattice-based signature schemes that have short signatures, keys, and tight reduction loss
in the standard model remain unknown.
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1.3 Contributions

We revisit DM14 [18] and apply two ideas to reduce reduction loss of DM14: considering
multiple tag collisions and changing the construction of tag sets by applying Kajita
et al.’s reduction technique [27]. Concerning tight security reductions, Kajita et al.
[27] present a signature scheme with the tightest security reduction among known
constant-size signature schemes secure under the computational Diffie-Hellman (CDH)
assumption. They first construct a signature scheme, satisfying a security notion denoted
as existentially unforgeable against extended random-message attacks (EUF-XRMA).
They transform it to an EUF-CMA secure scheme without loosing the tightness by
applying Abe et al.’s transformation technique [1].

In confined guessing, colliding with multiple tags is possible in non-lattice settings,
such as Diffie-Hellman based and RSA-based, but has not been achieved in the lattice
setting. The possibility of using multiple tags in the lattice setting has been an open
problem since the confined guessing technique was proposed by Böhl et al. We first
address this open problem of confined guessing in the lattice setting, where multiple tags
cannot be used in a signature simulation. In order to let the tags collide, signatures must
be aggregated and one signature must use multiple tags. However there are no ways to
aggregate signatures at the signing simulation of confined guessing in the lattice setting,
like Böhl et al.’s optimized CDH-based and RSA-based signature schemes [9]. On the
other hand, many lattice-based aggregate signatures have been proposed so far [5, 40, 41,
26, 30]. There are two types of lattice-based aggregate signatures: sequential aggregate
signatures (SAS) specifying the order of aggregation [5, 40] and unordered aggregate
signatures (UAS) aggregating in random order [41, 30]. When we try to apply the existing
aggregation technique to use multiple tags in a signature simulation, it does not work.
First of all, the order of aggregation is fixed in SAS, which causes further problems and
complications in signature simulation. Furthermore, because SAS uses hash chains [5], it
is not suitable for configuration in the standard model. In UAS, signatures are aggregated
using a lattice intersection method based on the Chinese Remainder Theorem. It is true
that UAS does not specify the order of aggregation, but the use of Chinese Remainder
Theorem makes the modulus 𝑞 exponentially large, which is not a solution. Lattice
signatures based on the SIS assumption using the confined guessing technique of Böhl
et al. [9, 18] were very effective in achieving compact signatures and key lengths, but
had the disadvantage of loose security reduction. We state and prove a new key lemma to
indicate the possibility of tag collisions. This achieves a reduction loss of 𝑂 (𝑄) smaller
than DM14 without any trade-off, where 𝑄 is the number of queries.

Next, to further reduce the reduction loss, we use the reduction technique of Kajita
et al. [27]. In their technique, by reducing the domain of the tag, the reduction loss
can be greatly reduced in exchange for the public key length. Here, we prepare two tag
generation parameters with different domains, and consider each of them as a scheme
with trade-off properties. This will be explained in detail later. Furthermore, we will
use the properties of the security argument proposed by Kajita et al. in their reduction
technique to improve the tag generation method. By constructing the tag from a random
message, it is not necessary to send the tag with the signature, which leads to slightly
smaller signatures.
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We now explain the differences between these two ideas in detail, based on the
tag generation parameter as mentioned above. Regarding a tag-generation parameter
𝐶𝑖 increasing monotonically for an index 𝑖, each tag set is constructed as {0, 1}𝐶𝑖 in
DM14’s method [18]. The number of elements in the tag sets directly leads to reduction
loss in the security proof when using confined guessing because a challenger embeds
a challenge problem into a certain target tag and hopes an adversary forges a signature
associated with the target tag from the tag sets. We change the construction of tag
sets from 𝐶𝑖 = ⌊𝛼𝑐𝑖⌋ to 𝐶𝑖 = 𝑖, where 𝑐 > 1 and 𝛼 ≥ 1

𝑐−1 to select a small tag set
in the security proof by applying Kajita et al.’s reduction technique. We present two
variants of our proposed signature scheme. The one is with 𝐶𝑖 = ⌊𝛼𝑐𝑖⌋, which has a
tighter reduction loss of𝑂

((
𝑄
𝑛

)𝑐)
than that of DM14 and the same verification key size

of 𝑂 (log 𝑛) as that of DM14. The other is with 𝐶𝑖 = 𝑖, which achieves much tighter
reduction loss of 𝑂 (𝑄𝑛 ) at the cost of verification key size of 𝑂 (𝑛). The variants of our
signature scheme can be easily switched by changing the value of𝐶𝑖 = ⌊𝛼𝑐𝑖⌋ and𝐶𝑖 = 𝑖,
respectively.

2 Preliminaries

Notation: If 𝑆 is a set, 𝑎 $←− 𝑆 denotes sampling 𝑎 at uniformly random from 𝑆. We write
negl(𝑛) to denote an unspecified function 𝑓 (𝑛) such that 𝑓 (𝑛) = 𝑛−𝜔 (1) , meaning that
such a function is negligible in 𝑛. For a probabilistic polynomial-time (PPT) algorithm
A, we write 𝑦 ← A(𝑥) to denote the experiment of running A for a given 𝑥, selecting
an inner coin 𝑟 uniformly from an appropriate domain, and assigning the results of this
experiment to the variable 𝑦, i.e. 𝑦 = A(𝑥; 𝑟). Let 𝑋 = {𝑋𝑛}𝑛∈N and 𝑌 = {𝑌𝑛}𝑛∈N
be probability ensembles such that each 𝑋𝑛 and 𝑌𝑛 are random variables over {0, 1}𝑛.
The statistical distance between 𝑋𝑛 and 𝑌𝑛 is Dist(𝑋𝑛, 𝑌𝑛) := 1

2
∑

𝑠∈{0,1}𝑛 | Pr[𝑋𝑛 =
𝑠] −Pr[𝑌𝑛 = 𝑠] |. We write 𝑋 ≡ 𝑌 if Dist(𝑋𝑛, 𝑌𝑛) = 0. We sometimes use a short notation
(A,B) for the result of vertically stacking two matrices A and B. We write # to denote
the number of elements. Let 𝑔 be a real valued function, we sometimes use a notation
of 𝑂̃ = 𝑂 (𝑔(𝑛) log𝑘 𝑔(𝑛)) for some 𝑘 . We denote | |x| | =

√∑
𝑖 𝑥

2
𝑖 as the Euclidean norm

for x = {𝑥𝑖}.

2.1 Digital Signatures

A digital signature scheme is given by a triple, SIG = (KGen,Sign,Vrfy), of PPT Turing
machines, where for every sufficiently large 𝑛 ∈ N, the key-generation algorithm KGen
takes as input security parameter 1𝑛 and outputs a pair of verification and signing
keys, (𝑣𝑘, 𝑠𝑘). LetM𝑛 be a message space. The signing algorithm Sign takes as input
(𝑣𝑘, 𝑠𝑘) and a message 𝑚 ∈ M𝑛 and produces a signature 𝜎. The verification algorithm
Vrfy takes as input 𝑣𝑘 , 𝑚, and 𝜎, and outputs a verification result bit. For correctness,
Vrfy(𝑣𝑘, 𝑚, 𝜎) = 1, where 𝜎 = Sign(𝑠𝑘, 𝑚), must hold for any (𝑣𝑘, 𝑠𝑘) pair generated
with 𝐾𝐺𝑒𝑛(1𝑛) and for any 𝑚 ∈ M𝑛.
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2.2 Security Classes

EUF-CMA: A digital signature scheme SIG is considered an EUF-CMA [20] if for
any adversary A, AdvEUF-CMA

SIG,A (𝑛) := Pr[ExptEUF-CMA
SIG,A (𝑛) = 1] = negl(𝑛), where

ExptEUF-CMA
SIG,A (𝑛) is defined in Fig. 1. Sign𝑠𝑘 (·) is a signing oracle with respect to 𝑠𝑘

that takes as input 𝑚, returns 𝜎 ← Sign𝑠𝑘 (𝑚), and records 𝑚 to a message list Q𝑚,
which is initially an empty list.

ExptEUF-CMA
SIG,A (𝑛):
(𝑣𝑘, 𝑠𝑘) ← KGen(1𝑛);
(𝑚∗, 𝜎∗) ← ASign𝑠𝑘 ( ·) (𝑣𝑘)
If 𝑚∗ ∈ Q𝑚, then return 0
Return Vrfy(𝑣𝑘, 𝑚∗, 𝜎∗).

Fig. 1. Experiment with EUF-CMA.

EUF-XRMA: A SIG is considered an EUF-XRMA [1] with respect to the message
generator MsgGen, which is a PPT algorithm that takes as input a message-generation
key 𝑔𝑘 and outputs𝑚 and 𝜌, if for anyA and any positive integer𝑄, AdvEUF-XRMA

SIG,A (𝑛) :=
Pr[ExptEUF-XRMA

SIG,A (𝑛) = 1] = negl(𝑛), where ExptEUF-XRMA
SIG,A (𝑛) is defined in Fig. 2, and

Q𝑚 = {𝑚1, . . . , 𝑚𝑄}.

ExptEUF-XRMA
SIG,A (𝑛):
(𝑣𝑘, 𝑠𝑘) ← KGen(1𝑛);
𝑔𝑘 ← Setup(1𝑛)
For ∀𝑖 ∈ [𝑄],
(𝑚𝑖 , 𝜌𝑖) ← MsgGen(𝑔𝑘);

𝜎𝑖 ← Sign𝑠𝑘 (𝑚𝑖)
(𝑚∗, 𝜎∗) ← A(𝑣𝑘, {𝑚𝑖 , 𝜎𝑖 , 𝜌𝑖}𝑄𝑖=1)
If 𝑚∗ ∈ Q𝑚, then return 0
Return Vrfy(𝑣𝑘, 𝑚∗, 𝜎∗).

Fig. 2. Experiment with EUF-XRMA. Setup algorithm is PPT algorithm that takes as input
security parameter 1𝑛 and outputs 𝑔𝑘 .

2.3 Lattice and Gaussian

A full-rank 𝑛-dimensional lattice is the setΛ = {Bz : z ∈ Z𝑛} of all integer combinations
of 𝑛 basis vectors B = [b1, . . . , b𝑛] ∈ Z𝑛×𝑛𝑞 . For positive integers 𝑛 and 𝑞, let A ∈ Z𝑛×𝑛𝑞
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be arbitrary and define the following full-rank 𝑛-dimensional 𝑞-ary lattices:

Λ(A) = {z ∈ Z𝑛 : ∃s ∈ Z𝑛𝑞 s.t. z = A𝑡s mod 𝑞},
Λ⊥ (A) = {z ∈ Z𝑛 : Az = 0 mod 𝑞}.

For any u ∈ Z𝑛𝑞 , define the coset (or shifted lattice) as Λ⊥u (A) = {z ∈ Z𝑛 : Az = u
mod 𝑞}.

We consider lattice problems restricted to ideal lattices [33]. We focus on rings of the
form R = Z[𝑋]/Φ𝑛 (𝑋) and R𝑞 = (R/𝑞R), where 𝑛 is a power of 2, 𝑞 is an integer, and
Φ𝑛 (𝑋) = 𝑋𝑛 + 1 is the cyclotomic polynomial of degree 𝑛 [32]. For our construction,
we require that Φ𝑛 (𝑋) does not split into low degree polynomials modulo the prime
factors of 𝑞. More specifically, we choose 𝑞 = 3𝑘 . Note that the lattice dimensions and
polynomial orders are the same for the sake of simplicity. The geometric quality of a
matrix A ∈ R𝑚×𝑛 is measured by its spectral norm 𝑠1 = supx | |Ax| |/| |x| | for every x ∈ Λ.

The 𝑛-dimensional Gaussian function 𝜌𝑠 : R𝑛 → (0, 1] is defined as 𝜌𝑠 (x) =
exp(−𝜋 · | |x/𝑠 | |2) for a variance 𝑠. For any countable 𝑋 ⊂ R𝑛, let 𝜌(𝑋) = ∑

x∈𝑋 𝜌𝑠 (x).
The discrete Gaussian distribution 𝐷Λ,𝑠 over a lattice Λ is defined as 𝐷Λ,𝑠 (x) =
𝜌𝑠 (x)/𝜌𝑠 (Λ) for all x ∈ Λ. The discrete Gaussian distribution over 𝑛-dimensional
row vectors of ring 𝐷R,𝑠 := 𝐷𝑛

Z,𝑠 is defined by identifying the ring R with Z𝑛 under the
coefficient embedding. The discrete Gaussian distribution over the ring x ← 𝐷R,𝑠 is a
sub-Gaussian of parameter 𝑠. We then define the ring-SIS problem as follows.

Definition 1. In the SIS over rings problem (ring-SIS𝑤,𝑞,𝛽), one is given a matrix
𝐴 ∈ R1×𝑤 and asked to find a non-zero vector x ∈ Λ⊥𝑞 (A) such that | |x| | ≤ 𝛽.

2.4 Lattice Trapdoor

We define lattice trapdoors as follows on the basis of DM14 [18]. For modulus 𝑞 = 3𝑘 and
𝑛× 𝑛 identity matrix I𝑛, we define the gadget matrix G = [I𝑛 |3I𝑛 | . . . |3𝑘−1I𝑛] ∈ Z𝑛×𝑘𝑛𝑞 .
Because I𝑛 corresponds with the ring element 1 ∈ R𝑞 , the gadget matrix G can be
regarded as a row vector of the ring elements: G = [1, 3, . . . 3𝑘−1] ∈ R1×𝑘

𝑞 .

Definition 2. For any A ∈ R1×(𝑤+𝑘)
𝑞 , and invertible H ∈ R1×1

𝑞 , a G-trapdoor for A with

H is a matrix S ∈ R𝑤×𝑘
𝑞 such that A

[
S
I𝑘

]
= HG.

The quality of a G-trapdoor S is measured by the spectral norm 𝑠1 (S). If S← 𝐷𝑤×𝑘
R,𝑠 ,

then we have 𝑠1 (S) = 𝑠
√
𝑛 · 𝑂 (√𝑤 +

√
𝑘 + 𝜔(

√
log 𝑛)) with overwhelming probability.

LetU𝑤 be the uniform distribution over 𝑤-dimensional ring elements. We introduce the
following theorem.

Theorem 1.([18]). There is a polynomial time algorithm GenTrap(A′,H, 𝑠) that on
inputting a matrix A′ ∈ R1×𝑤

𝑞 , H ∈ R𝑞 , with parameter 𝑠 > 𝜔(
√

ln 𝑛𝑤) outputs a
matrix A′′ ∈ R1×𝑘

𝑞 and a G-trapdoor S ∈ R𝑤×𝑘
𝑞 for A = [A′,A′′] with H ∈ R𝑞 such

that 𝑠1 (S) = 𝑠 · 𝑂 (√𝑤 +
√
𝑘 + 𝜔(

√
log 𝑛)). In addition, if 𝑤 ≥ 2(⌈log2 𝑞⌉ + 1), then

with overwhelming probability over the choice of A′ ← U𝑤 , the distribution of A′′ is
statistically close to uniform.
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We introduce the following lemma that any linear combination of S is also G-trapdoor.
For any matrix 𝑋 ∈ R, we write the sub-matrix as 𝑋[𝑖 ] .

Lemma 1.([18]). For 𝑖 = 0, . . . , 𝑑, let S[𝑖 ] ∈ R𝑤×𝑘
𝑞 be a G-trapdoor for [A,A[𝑖 ]] with

H[𝑖 ] ∈ R𝑞 , where A[𝑖 ] ∈ R1×𝑘
𝑞 . Then, any linear combination S =

∑
𝑖 𝑦𝑖 · S[𝑖 ] with

𝑦𝑖 ∈ R𝑞 is a G-trapdoor for [A,∑𝑖 𝑦𝑖A[𝑖 ]] with H =
∑

𝑖 𝑦𝑖H[𝑖 ] .

Let us introduce a sampling algorithm from [34].

Corollary 1.([34]). There is an efficient algorithm SampleD(A, u0, S, 𝑠) that, on in-
putting a matrix A ∈ R1×(𝑤+𝑘)

𝑞 , syndrome u0 ∈ R𝑞 , G-trapdoor S ∈ R𝑤×𝑘
𝑞 for A with

invertible H ∈ R𝑞 , and parameter 𝑠 = 𝜔(
√

log 𝑛) · 𝑠1 (S), produces a sample statistically
close to the distribution 𝐷Λ⊥u0 (A) ,𝑠

, where 𝐷Λ⊥u0 (A) ,𝑠
is the discrete Gaussian distribution,

the variance of which is 𝑠 and center is u0.

2.5 Trapdoor Commitments

We define a trapdoor commitment scheme [14]. Let TCOM = (KGentc,Comtc, TComtc,
TColtc) be a tuple of the following four algorithms: KGentc is a PPT algorithm that
takes as input security parameter 1𝑛 and outputs a pair of keys, one public and one
trapdoor (𝑝𝑘, 𝑡𝑘) ← KGentc (1𝑛); Comtc is a PPT algorithm that takes as input 𝑝𝑘
and 𝑚, selects a random 𝑟 ← COINcom in which 𝑟 ∈ Z𝑞 , and outputs a commitment
𝜇 = Comtc

𝑝𝑘 (𝑚; 𝑟); TComtc is a PPT algorithm that takes as input 1𝑛 and 𝑡𝑘 and outputs
(𝜇, 𝜒) ← TComtc

𝑡 𝑘 (1𝑛), where 𝜒 is auxiliary information; and TColtc is a deterministic
polynomial-time algorithm that takes as input 𝑡𝑘 , 𝜇, 𝜒, and 𝑚 and outputs 𝑟 such that
𝜇 = Comtc

𝑝𝑘 (𝑚; 𝑟). For example, there are some concrete constructions of lattice-based
commitment schemes [29, 6, 15]. We use implicitly them in this paper.

3 Our Intermediate Scheme with Mild Security

In general, the fully secure EUF-CMA signature scheme is constructed from some
intermediate mildly secure scheme. We first construct our intermediate signature scheme
with EUF-XRMA security from DM14. We apply two ideas to reduce the reduction loss:
considering multiple tag collisions and changing the construction of tag sets.

3.1 Tags

Before we describe each idea in more detail, we introduce tags based on DM14. We
identify each tag prefix 𝑡 = [𝑡0, . . . , 𝑡𝑖−1] ∈ T𝑖 with a corresponding ring element
𝑡 (𝑋) = ∑

𝑗<𝑖 𝑡 𝑗𝑋
𝑗 ∈ R𝑞 with binary coefficients 𝑡 𝑗 ∈ {0, 1}. We define the sets of tag

prefixes T𝑖 = {0, 1}𝐶𝑖 , where 𝐶𝑖 is a monotonically increasing constant. For simplicity,
we write a tag set to denote T𝑖 . For any full tag 𝑡 ∈ T = T𝑑 and 𝑖 < 𝑑, we write 𝑡≤𝑖 ∈ T𝑖
for its prefix of length 𝑖 and 𝑡 [𝑖 ] for the (ring) difference 𝑡≤𝑖 (𝑋)−𝑡≤𝑖−1 (𝑋) ∈ R𝑞 . Figure 3
is an example that shows mod operations 𝑡≤𝑖 = 𝑚 mod 𝐶𝑖 when 𝐶𝑖 = 𝑖. Then 𝑡 [𝑖 ] is
obtained by computing the difference 𝑡≤𝑖 (𝑋) − 𝑡≤𝑖−1 (𝑋). We demonstrate the following
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Fig. 3. Example of tags when 𝐶𝑖 = 𝑖

lemma to prove the security of our signature scheme later in this paper. This lemma is
almost the same as lemma 1 in [27], but its parameters are different from those of [27]
to match the lattice setting. The proof of [27] cannot directly apply to this lemma, so we
show the proof of this lemma here.
Lemma 2. Let 𝑄 = 2𝑂 (𝑛) and 𝜓 = Ω(𝑛). If #T > 2𝑒𝑄

𝜓+1 ,

Pr[(𝜓+1)-fold]:=Pr[∃i1, . . ., i𝜓+1∈[Q]s.t. ti1 = · · ·=ti𝜓+1 ]

is exponentially small in 𝑛, where 𝑡1, . . . , 𝑡𝑄 are independently and uniformly chosen
from T and 𝑒 denotes the base of the natural logarithm.
Proof. We compute the probability of Pr[(𝜓 + 1)-fold] where 𝜓 + 1 tags are the same
from 𝑄 elements. We then apply Stirling’s approximation and asymptotically estimate
the probability.

Pr[∃𝑖1, . . . , 𝑖𝜓+1 ∈ [𝑄] s.t 𝑡𝑖1 = · · · = 𝑡𝑖𝜓+1 ]

≤
(
𝑄

𝜓 + 1

) (
1

#T

)𝜓
=
𝑄 · (𝑄 − 1) · · · (𝑄 − 𝜓)

(𝜓 + 1)!

(
1

#T

)𝜓
≤ 𝑄𝜓+1

(𝜓 + 1)!

(
1

#T

)𝜓
≤ 𝑄𝜓+1√

2𝜋(𝜓 + 1)

(
𝑒

𝜓 + 1

)𝜓+1 (
1

#T

)𝜓
· · · (∗)

=
𝑒 · 𝑄√

2𝜋(𝜓 + 1) · (𝜓 + 1)

(
𝑒 · 𝑄

#T (𝜓 + 1)

)𝜓
.

Inequality (∗) holds by Stirling’s approximation
√

2𝜋𝑥
( 𝑥
𝑒

) 𝑥
≤ 𝑥! ≤ 𝑒

√
𝑥
( 𝑥
𝑒

) 𝑥
.

From 𝜓 = 𝑂 (𝑛) and 𝑄 = 2𝑂 (𝑛) ,

𝑒 · 𝑄√
2𝜋(𝜓 + 1) · (𝜓 + 1)

=
2𝑂 (𝑛)

𝑂 (𝑛3/2)
.
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Now, we set #T > 2𝑒𝑄
𝜓+1 and 𝑒 ·𝑄

#T(𝜓+1) < 1/2. 𝑒 ·𝑄√
2𝜋 (𝜓+1) ·(𝜓+1)

is a power of 2 order in

𝑛. Hence, Pr[(𝜓 + 1)-fold] is exponentially small in 𝑛. 2

The lemma above is a generalized birthday bound lemma, which often appears in
the literature with 𝜓 as a constant number, including [9]. In this case, 𝜓 is not constant
and 𝑄 is an exponential number, which lead to somewhat different results than those in
[9, 18, 27].

3.2 Multiple tag collisions

If we can consider multiple tag collisions, the tag set will be smaller. For example, if the
tag set is small, a tag collision will surely occur. On the contrary, if it is sufficiently large,
almost no collision will occur. The simulator then uses the tag set so that the probability
of tag collisions is negligible and guesses the solution among that tag set, which affects
the reduction loss directly. From lemma 2, if we set the tag size #T > ⌊(2𝑒𝑄)/(𝜓 + 1)⌋,
the probability of 𝜓 tag collisions is negligible. We then present the following key
lemma. This key lemma is used as a basis for considering multiple tag collisions in the
signature simulation of our signature. The key lemma shows that𝜓 different simultaneous
equations have the same solution in vectors 𝐴 and 𝐵 of different sizes chosen randomly.

Lemma 3. Let 𝐴 = [𝐴′ |𝐴′′] = [𝑎1, . . . , 𝑎𝑤+𝑘 ] ∈ 𝑅1×(𝑤+𝑘)
𝑞 and 𝐵 = [𝑏1, . . . , 𝑏𝑘 ] ∈

𝑅1×𝑘
𝑞 . For 0 ≤ 𝑖, 𝑗 ≤ 𝜓 − 1 and 𝜓 < 𝑘 < 𝑤, there exist 𝑋 ∈ 𝑅 (𝑤+𝑘)×1

𝑞 and𝑌 ∈ 𝑅𝑘×1
𝑞 such

that 𝐴𝑋ℓ − 𝐵𝑌ℓ = · · · = 𝐴𝑋ℓ+𝜓−1 − 𝐵𝑌ℓ+𝜓−1 and 𝑋ℓ+𝑖 ≠ 𝑋ℓ+ 𝑗 , 𝑌ℓ+𝑖 ≠ 𝑌ℓ+ 𝑗 .

Proof. For 𝑋ℓ = [𝑥1, . . . , 𝑥𝑤+𝑘 ]𝑇 and 𝑌ℓ = [𝑦1, . . . , 𝑦𝑘 ]𝑇 , let

𝐴𝑋ℓ − 𝐵𝑌ℓ = 𝑣0.

Now we show that 𝐴𝑋ℓ+𝑖 − 𝐵𝑌ℓ+𝑖 = 𝑣0. For uniformly chosen 𝑟ℓ+𝑖 ← 𝑅𝑞 and random
matrices 𝑍 ∈ 𝑅𝑤×1

𝑞 and 𝑍 ′ ∈ 𝑅𝑘×1
𝑞 , we set 𝑋ℓ+𝑖 and 𝑌ℓ+𝑖

𝑋ℓ+𝑖 = 𝑋ℓ − 𝑟ℓ+𝑖
[
𝐵𝑇 |𝑍

]𝑇 ∈ 𝑅 (𝑤+𝑘)×1
𝑞 ,

𝑌ℓ+𝑖 = 𝑌ℓ − 𝑟ℓ+𝑖
[
𝐴′𝑇 + 𝑍 ′

]
∈ 𝑅𝑘×1

𝑞 .

From 𝜓 < 𝑘 < 𝑤, let 𝑤 = 𝑐𝑘 + 𝑑 for 𝑐 ∈ N, 𝑑 < 𝑘 ∈ N. So we have

𝐴 = [𝑎1, · · · , 𝑎𝑘 , 𝑎𝑘+1, · · · , 𝑎𝑐𝑘 , · · · , 𝑎𝑐𝑘+𝑑] .

We divide 𝐴 for simplicity as follows:

𝐴1 = [𝑎1, · · · , 𝑎𝑘 ],
𝐴2 = [𝑎𝑘+1, · · · , 𝑎𝑘+𝑘 ],

...

𝐴𝑐 = [𝑎 (𝑐−1)𝑘+1, · · · , 𝑎 (𝑐−1)𝑘+𝑘 ],
𝐴𝑐+1 = [𝑎𝑐𝑘+1, . . . , 𝑎𝑐𝑘+𝑑] .
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For 1 ≤ 𝑖 ≤ 𝜓, we let 𝑋ℓ+𝑖 , 𝑌ℓ+𝑖 by using 𝑋ℓ , 𝑌ℓ as follows.

𝑋ℓ+𝑖 =𝑋ℓ − 𝑟ℓ+𝑖



𝐵𝑇

...
𝐵𝑇

𝑏1
...
𝑏𝑑


∈ 𝑅 (𝑤+𝑘)×1

𝑞 , (1)

𝑌ℓ+𝑖 =𝑌ℓ− 𝑟ℓ+𝑖

(
𝐴𝑇1 +𝐴𝑇2 +· · ·+𝐴𝑇𝑐 +

[
𝐴𝑇𝑐+1

0

])
∈𝑅𝑘×1

𝑞 . (2)

Note that in the second term of equation (1), 𝐵𝑇 is aligned 𝑐 vertically,and from the
relation 𝑤 = 𝑐𝑘 + 𝑑, only 𝑑 vectors of 𝐵 are aligned. Then, from (1), (2),

𝐴𝑋ℓ+𝑖−𝐵𝑌ℓ+𝑖

= 𝐴𝑋ℓ−𝐵𝑌ℓ−𝑟ℓ+𝑖
(
𝐴1𝐵

𝑇 + 𝐴2𝐵
𝑇 + · · · +𝐴𝑐𝐵

𝑇

+𝐴𝑐+1 [𝑏1, . . . , 𝑏𝑑]𝑇−𝐵𝐴𝑇1 −𝐵𝐴𝑇2 − · · · −𝐵𝐴𝑇𝑐 −𝐵
[
𝐴𝑇𝑐+1

0

] )
= 𝐴𝑋ℓ − 𝐵𝑌ℓ
= 𝑣0.

Therefore, for 0 ≤ 𝑖, 𝑗 ≤ 𝜓 − 1, we get

𝐴𝑋ℓ − 𝐵𝑌ℓ = · · · = 𝐴𝑋ℓ+𝜓−1 − 𝐵𝑌ℓ+𝜓−1.

Finally, we estimate the probability that 𝑋ℓ+𝑖 = 𝑋ℓ+ 𝑗 and 𝑌ℓ+𝑖 = 𝑌ℓ+ 𝑗 happen. Since
𝑟ℓ+𝑖 is an uniformly randomness, the probability will be exponentially small. Therefore
we get 𝐴𝑋ℓ − 𝐵𝑌ℓ = · · · = 𝐴𝑋ℓ+𝜓−1 − 𝐵𝑌ℓ+𝜓−1 and 𝑋ℓ+𝑖 ≠ 𝑋ℓ+ 𝑗 , 𝑌ℓ+𝑖 ≠ 𝑌ℓ+ 𝑗 with
overwhelming probability. 2

3.3 Changing tag construction

DM14 makes the tag sets as {0, 1} ⌊𝛼𝑐𝑖 ⌋ . In proposed scheme with property 1, we take
over their tag setting, so we can also write our proposed scheme with property 1 as
proposed scheme with 𝐶𝑖 = ⌊𝛼𝑐𝑖⌋. We then make tag sets with small space by applying
existing reduction technique [27]. If we can select a small target tag set in the security
proof, we can make reduction loss tighter. Kajita et al. [27] improved the reduction
loss in trade-off with the public key length by changing the way the domain of the tag.
Thus, we then make the tag sets as {0, 1}𝑖 . Although the total number of elements in
the tags is as same as DM14, we extend the number of tag sets instead of increasing the
number of elements in the tag sets. It is the optimal case that the number of elements
in tag sets is minimized at the cost of the number of tag sets because we can select
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a certain tag sets considering tag collisions. The increased number of tag sets affects
the size of verification keys from 𝑂 (log 𝑛) to 𝑂 (𝑛) because the size is commensurate
with the number of tag sets. Note that this approach does not affect the security proof
because the only target tag set which is carefully selected is used in the security proof.
We apply this reduction technique [27] and write the signature scheme as proposed
scheme with property 2 or proposed scheme with 𝐶𝑖 = 𝑖. The only difference between
our proposed scheme with two properties is the tag-generation parameter 𝐶𝑖 , so it can
be easily switched by changing 𝐶𝑖 .

3.4 Construction

We construct our proposed mildly secure signature scheme (hereafter, SIG0). SIG0 is
similar to DM14’s non-adaptively secure signature scheme [18]. The main differences
between SIG0 and DM14 are the generation of tags from messages and that the tag-
generation parameter 𝐶𝑖 is variable. Figure 4 illustrates SIG0. Let 𝑘 be an arbitrary
system parameter. We let 𝑤 = 2⌈log2 𝑞⌉ + 2, 𝑞 = 3𝑘 , and 𝑠 = 𝑛3/2 · 𝜔(log 𝑛)3/2 as
system parameters. Let the algorithm BtoR in Sign and Vrfy be a function that converts
an 𝑛𝑘-bit string into a 𝑘-dimension vector in R𝑞 . Note that to sign a message 𝑚, SIG0
generates {𝑡≤1, . . . , 𝑡≤𝑑} and {𝑡 [1] , . . . , 𝑡 [𝑑 ]}, from 𝑚. Now we describe two core sub-
algorithms [18, 34] used in our scheme: GenTrap and SampleD.
GenTrap: Let Gaussian parameter 𝑠 > 𝜔(

√
ln 𝑛𝑤). For 𝑖 = 0, . . . , 𝑑, according to

Theorem 1 and Definition 2, we get 𝑆 [𝑖 ] ← 𝐷𝑤×𝑘
R,𝑠 from Gaussian distribution with

parameter 𝑠.We compute A[i] as follows;

A[𝑖 ]
[
S[i]
I𝑘

]
= H[i]G

⇐⇒ A′S[i] + A[𝑖 ] = H[i]G
∴ A[𝑖 ] = H[i]G − A′S[i] (3)

At the signing stage, we apply linear combinations by Lemma 1 for the equation (3). For
𝑡 [𝑖 ] ∈ 𝑅𝑞 , we compute Ht, St,At as follows;

A𝑡 = [A′ |A[0] +
𝑑∑
𝑖=1

𝑡 [𝑖 ]A[𝑖 ]]

H𝑡 = H[0] +
𝑑∑
𝑖=1

𝑡 [𝑖 ]H[𝑖 ]

S𝑡 = S[0] +
𝑑∑
𝑖=1

𝑡 [𝑖 ]S[𝑖 ]

Then we get

A𝑡

[
St
I𝑘

]
= HtG.
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KGen(𝑛) Sign(𝑣𝑘, 𝑠𝑘, 𝑚) Vrfy(𝑣𝑘, 𝑚,𝝈)
A′ ← R1×𝑤

𝑞 𝑡≤0 = 1 𝑡≤0 = 1
U← R1×𝑘

𝑞 For 𝑖 = 1 to 𝑑 For 𝑖 = 1 to 𝑑
v0 ← R𝑞 𝑡≤𝑖 = 𝑚 mod 𝐶𝑖 𝑡≤𝑖 = 𝑚 mod 𝐶𝑖
{H[i] }𝑑𝑖=0 ← R𝑞 𝑡 [𝑖 ] = (𝑡≤𝑖 − 𝑡≤𝑖−1)𝑋 𝑖−1 𝑡 [𝑖 ] = (𝑡≤𝑖 − 𝑡≤𝑖−1)𝑋 𝑖−1

for 𝑖 = 0 to 𝑑 do A𝑡 = [A′ |A[0] +
∑𝑑
𝑖=1 𝑡 [𝑖 ]A[𝑖 ] ] m = BtoR(𝑚)

(A[i], S[i])←GenTrap(A′,H, 𝑠) H𝑡 = H[0] +
∑𝑑
𝑖=1 𝑡 [𝑖 ]H[𝑖 ] compute A𝑡 , u0

A[𝑖 ] ← R1×𝑘
𝑞 S𝑡 = S[0] +

∑𝑑
𝑖=1 𝑡 [𝑖 ]S[𝑖 ] if | |𝝈 | | ≤ 𝑠

√
𝑛(𝑤 + 𝑘)

𝑣𝑘=(A′, {A[i] ,H[i] }di=0, U, v0) m = BtoR(𝑚) and A𝑡𝝈 = u0
𝑠𝑘 = {S[i] }di=0 u0 = Um + v0 return 1
return (𝑣𝑘, 𝑠𝑘) 𝝈←SampleD(A𝑡 ,H𝑡 , St, u0, 𝑠) else

　 return 𝝈 return 0

Fig. 4. SIG0: EUF-XRMA-secure signature scheme under ring-SIS assumption

SampleD: SampleD [34] is a sampling algorithm that outputs signatures. We explain
the necessary equations and the final form of the signature. For 𝑠 = 𝜔(

√
log 𝑛) · 𝑠1 (St)

according to Corollary 1, we choose randomness p1 ← 𝐷𝑤
R⨿ ,𝑠 and p2 ← 𝐷𝑘

R⨿ ,𝑠 from

Gaussian distribution with 𝑠 and get p =

[
p1
p2

]
∈ 𝑅 (𝑤+𝑘)×1

𝑞 . This randomness p is called

as a perturbation parameter. We set 𝑤 = Gp2 and 𝑤′ = A′(p1 − Stp2). For 𝑢0 ∈ 𝑅𝑞 , we
define 𝑣 as follows;

𝑣 = Ht
−1 (𝑢0 − 𝑤′) − 𝑤 = Ht

−1 (𝑢0 − Atp) (4)

Then we perform the Gaussian sampling with 𝑠 such that

Gz = 𝑣 mod 𝑞

and get z ∈ 𝑅𝑘
𝑞 . Finally SampleD outputs

𝝈 =

[
St
Ik

]
z + p ∈ 𝑅 (𝑤+𝑘)×1

𝑞 .

Correctness: The correctness of SIG0 is verified in the same manner of DM14 as follows.
Because 𝑠 = 𝑛3/2 ·𝜔(log 𝑛)3/2, the signature 𝝈 produced during the signature generation
process follows the distribution 𝐷Λ⊥u (A𝑡 ) ,𝑠 and has a length of at most 𝑠

√
𝑛(𝑤 × 𝑘) with

overwhelming probability. From (4), (4), (5), and (5),

At𝝈 = At

( [
St
Ik

]
z + p

)
= HtGz + Atp

= HtH−1
t (u0 − Atp) + Atp = u0.

Thus, 𝝈 is accepted by the verification algorithm.
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3.5 Security Analysis

Let (𝑚, 𝜒) ← MsgGen be the algorithm based on lattices in the EUF-XRMA experiment
that runs (𝜇, 𝜒) ← TComtc

𝑡 𝑘 (1𝑛) and outputs a commitment 𝜇 as a message 𝑚.

Theorem 2. Under the ring-SIS𝑤,𝑞,𝛽 assumption for 𝛽 = 𝑂̃ (𝑛7/2), SIG0 is EUF-XRMA
secure. More precisely, if there exists an attacker A against EUF-XRMA of SIG0 that
runs in time 𝑇 , makes at most𝑄 queries where𝑄 = 2𝑂 (𝑛) and succeeds with probability
𝜖 ≥ 2−𝑂 (𝑛) , then there exists an algorithmB that runs in time𝑇 ′ = 𝑇+poly(𝑛) and solves
ring-SIS𝑤,𝑞,𝛽 with probability 𝜖 ′ = Ω(( 𝜓+14𝑒𝑄 )𝑐) · 𝜖 for 𝐶𝑖 = ⌊𝛼𝑐𝑖⌋ or 𝜖 ′ = Ω( 𝜓+14𝑒𝑄 ) · 𝜖 for
𝐶𝑖 = 𝑖 , where 𝜓 is the number of tag-collisions and 𝑒 denotes the base of the natural
logarithm.

The security proof of Theorem 2 is different in the manner of multiple tag colli-
sions and the tag-generation method from that of DM14 and success probability of the
simulation due to tag-generation parameter 𝐶𝑖 .
Proof. Suppose that there exists a PPT A against SIG0 and MsgGen. We demonstrate
that we can construct an algorithm B that uses A as an internal sub-algorithm to solve
the ring-SIS problem.

Setup: B receives a ring-SIS challenge A′ ∈ R1×𝑤
𝑞 . B then runs MsgGen to receive

{𝑚 ( 𝑗) , {𝑡 ( 𝑗)[𝑖 ] }
𝑑
𝑖=0}

𝑄
𝑗=1 ← MsgGen(1𝑛) as follows. Let us define M := {𝑚 ( 𝑗) }𝑄𝑗=1 and

T𝑖 := {0, 1}𝐶𝑖 for 𝑖 = 0, . . . , 𝑑. For 𝑗 = 1, . . . , 𝑄, B selects message 𝑚 ( 𝑗) ∈ {0, 1}𝑛𝑘
uniformly at random. Then, for 𝑖 = 0, . . . , 𝑑 and 𝑐 > 1, let

𝑡
( 𝑗)
≤𝑖 =

{
0 if 𝑖 = 0
𝑚 ( 𝑗) mod 𝐶𝑖 if 𝑖 ≥ 1

𝑡
( 𝑗)
[𝑖 ] = 𝑡

( 𝑗)
≤𝑖 (𝑋) − 𝑡

( 𝑗)
≤𝑖−1 (𝑋) ∈ R𝑞

B sets 𝑖∗ to be as small as possible such that 𝑖∗ > ⌊(2𝑒𝑄)/(𝜓 + 1)⌋. If #T𝑖∗ >
⌊(2𝑒𝑄)/(𝜓 + 1)⌋, the probability that event (𝜓 + 1)-fold occurs is exponentially small
if 𝑄 tags are independently and uniformly chosen from T𝑖∗ , due to Lemma 2. Let us
denote as (𝜓 + 1)-foldreal the event that (𝜓 + 1)-fold occurs on a tag in T𝑖∗ when 𝑡 ( 𝑗)≤𝑖∗
are selected in accordance with the distribution of MsgGen. We show that the statistical
distance between the distribution of tags computed by the signed message and uniform
distribution is negligible.

Claim. Pr[(𝜓 + 1)-foldreal] = Pr[(𝜓 + 1)-foldideal]+2−𝑂 (𝑛) .
Proof of Claim. Let𝑚 be a message outputted by MsgGen, which is distributed over 𝑅𝑞 .
By construction , the distribution of 𝑡∗ = 𝑚 mod 𝐶𝑖 is statistically close to the uniform
distribution over 𝑇𝑖∗ , where 𝐶𝑖 is the tag-generation parameter. Its distance is bounded
by 2−𝑂 (𝑛) . Although independent 𝑄 messages are considered, the distance should be
still 2−𝑂 (𝑛) . 2

B randomly selects 𝑡∗≤𝑖∗
$←− T𝑖∗ and can solve the ring-SIS challenge whenA outputs

a forged pair (𝑚⋄,𝝈⋄) such that 𝑡∗≤𝑖∗ = 𝑚
⋄ mod 𝐶𝑖∗ . Let

M ′ := {𝑚 ∈ M|𝑡∗≤𝑖∗ = 𝑡
( 𝑗)
≤𝑖∗ }.
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If #M ′ ≥ 𝜓 + 1, B aborts; otherwise, it sets the verification key parameters as follows:

H[𝑖 ] =


0 ∈ R𝑞 if i > i∗,
1 ∈ R𝑞 if 1 ≤ i ≤ i∗,
−𝑡∗≤𝑖∗ if i = 0.

For 𝑠′ = 𝜔(
√

log 𝑛), B runs (A[𝑖 ] , S[𝑖 ]) ← GenTrap(A′,H[𝑖 ] , 𝑠′). From Lemma 1,

because we have H𝑡 = H[0] +
∑𝑑

𝑖=1 𝑡 [𝑖 ]H[𝑖 ] = −𝑡∗[𝑖∗ ] +
∑𝑖∗

𝑖=1 𝑡 [𝑖 ] = −𝑡∗≤𝑖∗ + 𝑡≤𝑖∗ , A𝑡

[
S𝑡

I

]
=

H𝑡G holds for

S𝑡 = S[0] +
𝑑∑
𝑖=1

𝑡 [𝑖 ]S[𝑖 ] ,

H𝑡 = −𝑡∗≤𝑖∗ + 𝑡≤𝑖∗ ,

A𝑡 = [A′ |A[0] +
𝑑∑
𝑖=1

𝑡 [𝑖 ]A[𝑖 ]] .

Simulation of keys and signatures: To exploit a forgery, B selects SU ← 𝐷𝑤×𝑘
R,𝑠′ . The

spectrum norm of SU satisfies 𝑠1 (SU) =
√
𝑛 · 𝜔(log 𝑛). We then have U = A′SU.

If 𝑡∗≤𝑖∗ ≠ 𝑡
( 𝑗)
≤𝑖∗ , B can run the signing algorithm 𝝈 ( 𝑗) ← Sign(𝑠𝑘, 𝑚 ( 𝑗) ) because

H𝑡 = −𝑡∗≤𝑖∗ + 𝑡≤𝑖∗ ≠ 0 as the same of DM14.
Otherwise, i.e., 𝑡∗≤𝑖∗ = 𝑡

( 𝑗)
≤𝑖∗ , H𝑡 = −𝑡∗≤𝑖∗ + 𝑡≤𝑖∗ = 0 holds. B must simulate signatures

from at most 𝜓 distinct messages. We set v0 = A𝑡𝜎
(ℓ) − U𝑚 (ℓ) for 1 ≤ ℓ ≤ 𝑄, where

A𝑡 := [𝑎1, . . . , 𝑎𝑘+𝑤], U := [𝑢1, . . . , 𝑢𝑘 ]. From 𝜓 < 𝑘 ≤ 𝑤, we set 𝑤 = 𝑐𝑘 + 𝑑 for
𝑐 ∈ N, 𝑑 < 𝑘 ∈ N. For 𝑟 (ℓ+𝑖) ← 𝑅𝑞 , we set

𝜎 (ℓ+𝑖) =𝜎 (ℓ)−𝑟 (ℓ+𝑖)



U𝑇

...
U𝑇

𝑢1
...
𝑢𝑑


∈𝑅 (𝑤+𝑘)×1

𝑞 ,

𝑚 (ℓ+𝑖) =𝑚 (ℓ)−𝑟 (ℓ+𝑖)
©­­­­«

𝑎1
...
𝑎𝑘

+

𝑎𝑘+1
...

𝑎𝑘+𝑘

+· · ·+

𝑎𝑐𝑘+1
...

𝑎𝑐𝑘+𝑑
0


ª®®®®¬
∈𝑅𝑘×1

𝑞 .

Then B selects 𝑚 ( 𝑗∗) at random fromM ′ and sets 𝑚∗ = 𝑚 ( 𝑗∗) . For the selected 𝑗∗,
B sets 𝝈∗ = 𝝈 ( 𝑗

∗) .
B sets 𝑣𝑘 = (A′,A[0] , . . . ,A[𝑑 ] ,U, v0). These simulated keys are indistinguishable

from real keys. B feeds (𝑣𝑘, {𝑚 ( 𝑗) ,𝝈 ( 𝑗) , {𝑡 ( 𝑗)[𝑖 ] }
𝑑
𝑖=0}

𝑄
𝑗=1) to A.



16 K. Kajita et al.

Correctness when 𝑡∗≤𝑖∗ ≠ 𝑡
( 𝑗)
≤𝑖∗ As defined, from (4), (4), (5), and (5), we have

A𝑡𝜎𝑗 = A𝑡

([
S𝑡

Ik

]
z 𝑗 + p

)
= H𝑡Gz 𝑗 + A𝑡p

= H𝑡H−1
𝑡 (𝑢0 − A𝑡p) + A𝑡p = 𝑢0.

Correctness when 𝑡∗≤𝑖∗ = 𝑡
( 𝑗)
≤𝑖∗ According to Lemma 3,

𝑢0=U𝑚 (ℓ)+𝑣0 = U𝑚 (ℓ)+A𝑡𝜎
(ℓ)−U𝑚 (ℓ) =A𝑡𝜎

(ℓ)

𝑢0=U𝑚 (ℓ+1)+𝑣0 = U𝑚 (ℓ+1)+A𝑡𝜎
(ℓ)−U𝑚 (ℓ) =A𝑡𝜎

(ℓ+1)

...

𝑢0=U𝑚 (ℓ+𝜓)+𝑣0 = U𝑚 (ℓ+𝜓)+A𝑡𝜎
(ℓ)−U𝑚 (ℓ) =A𝑡𝜎

(ℓ+𝜓)

Therefore, all simulated signatures are indistinguishable from real signatures.

A’s forgery: Given (𝑣𝑘, {𝑚 ( 𝑗) ,𝝈 ( 𝑗) , {𝑡 ( 𝑗)[𝑖 ] }
𝑑
𝑖=0}

𝑄
𝑗=1) from B, A generates a forged sig-

nature (𝑚⋄,𝝈⋄) and feeds it to B.

Exploiting the forgery: A outputs a forgery 𝝈⋄ for a message 𝑚⋄ of its selection
with a probability of at least 𝜖 . The simulator hopes that 𝑡⋄≤𝑖∗ = 𝑡∗≤𝑖∗ is fulfilled with
probability 1/|T𝑖∗ |. If 𝑡⋄≤𝑖∗ ≠ 𝑡

∗
≤𝑖∗ , B aborts; otherwise, B computes A⋄t , 𝑢⋄0 and obtains

𝝈 ← SampleD(A𝑡 , 𝑢0, S, 𝑠). Because A𝑡⋄𝝈
⋄ = 𝑢⋄0 holds, B has v0 = A𝑡⋄𝝈

⋄ − 𝑢⋄0.
Similarly for 𝝈∗, B has v0 = A𝑡∗𝝈

∗
1 − 𝑢∗0. Therefore, A𝑡∗𝝈

∗ − 𝑢∗0 = A𝑡⋄𝝈
⋄ − 𝑢⋄0. Because

the condition 𝑡⋄≤𝑖∗ = 𝑡
∗
≤𝑖∗ ensures H𝑡∗ = H𝑡⋄ = 0, we derive

[A| − AS𝑡∗ | − ASU] ·

𝝈∗𝑢
𝝈∗ℓ
𝑚∗

 = v0 =[A| − AS𝑡⋄ | − ASU] ·

𝝈⋄𝑢
𝝈⋄ℓ
𝑚⋄

 ,
where 𝝈 = (𝝈𝑢 ,𝝈ℓ) for the computation. In particular we obtain Aw = 0 for

w = (𝝈∗𝑢 − 𝝈∗ℓ − (S𝑡∗ · 𝝈⋄𝑢 − S𝑡⋄ · 𝝈⋄ℓ) − SU (𝑚∗ − 𝑚⋄)).

Because w has at least 𝜔(𝑛) min-entropy, the probability of w = 0 is 2−Ω(𝑛) .

Size of the extracted ring-SIS solution: Because s∗ and s⋄ are valid signatures, | |s∗ | |, | |s3 | |
≤ 𝑛2𝑤 · 𝜔(log 𝑛)3/2. For any tag 𝑡 ∈ T , 𝑠1 (S𝑡 ) ≤ 𝑛3/2 · 𝜔(log 𝑛). Additionally,
| |𝑚∗ | |, | |𝑚3 | | ≤ 𝑂 (

√
𝑛𝑘) and SU ≤

√
𝑛 · 𝜔(log 𝑛). Combining all these bounds, we

obtain

| |w| | ≤ 𝑛7/2 · log 𝑛 · 𝜔(log 𝑛)3/2.
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Success probability of the simulation: We denote 𝜖𝑚, 𝜖𝑛𝑢𝑟 , 𝜖𝑡⋄=𝑡∗ , and 𝜖w=0 as follows:
𝜖𝑚 is the probability that events #M ′ ≥ 𝜓 + 1 occur and is exponentially small; 𝜖𝑛𝑢𝑟 =
1/2Ω(𝑛) is the advantage ofA that distinguishes between uniformly random distributed
tags and simulated tags; 𝜖𝑡⋄=𝑡∗ is the probability that the forged tag corresponds to the
target tag , that is, 1/#T𝑖∗ ; and 𝜖w=0 is the probability that the ring-SIS solution w = 0
and is exponentially small. After B feeds all information, messages, signatures, and tags
as auxiliary information, the adversaryA returns the forgery 𝝈⋄ for a fresh message𝑚⋄.
If the tag 𝑡⋄≤𝑖∗ for the forgery corresponds the target tag 𝑡∗≤𝑖∗ , B can solve the ring-SIS
challenge with probability 1/|T𝑖∗ |. Therefore, for the advantage of the ring-SIS problem
𝜖 ′,

𝜖 ′ ≥ (1 − 𝜖𝑚 − 𝜖𝑛𝑢𝑟 ) · 𝜖𝑡⋄=𝑡∗ (1 − 𝜖w=0) · 𝜖

≥ 1
#T𝑖∗

𝜖 .

In accordance with Lemma 2, B chooses #T𝑖∗ such that #T𝑖∗−1 <
2𝑒𝑄
𝜓+1 < #T𝑖∗ for each

case of 𝐶𝑖 .
If 𝐶𝑖 = ⌊𝛼𝑐𝑖⌋ for 𝑐 > 1 and 𝛼 ≥ 1

𝑐−1 , 𝛼𝑐𝑖 ≤ 𝐶𝑖 + 1 holds, then 𝐶𝑖∗ ≤ 𝛼𝑐𝑖
∗
=

𝑐𝛼𝑐𝑖
∗−1 ≤ 𝑐(𝐶𝑖∗−1 + 1). B sets #T𝑖∗ as

#T𝑖∗ = 2𝐶𝑖∗ ≤ 2𝑐 (𝐶𝑖∗−1+1) = (2 · 2𝐶𝑖∗−1 )𝑐 = (2 · #T𝑖∗−1)𝑐 ≤
(
4𝑒𝑄
𝜓+1

)𝑐
.

Therefore, we get the success probability 𝜖 ′ ≥ 1
#T𝑖∗ 𝜖 = Ω

((
𝜓+1
4𝑒𝑄

)𝑐)
𝜖 . If 𝐶𝑖 = 𝑖, B sets

#T𝑖∗ as

#T𝑖∗ = 2𝑖
∗ ≤ 2 · 2𝑖∗−1 = 2T𝑖∗−1 ≤

4𝑒𝑄
𝜓 + 1

.

Therefore, B can solve the ring-SIS challenge with success probability 𝜖 ′ ≥ 1
#T𝑖∗ 𝜖 =

Ω
(
𝜓+1
4𝑒𝑄

)
𝜖 . 2

4 Our Scheme with Full Security

In this section, we demonstrate the construction of our fully EUF-CMA-secure signature
scheme from SIG0 by applying a generic conversion technique of Abe et al.using trapdoor
commitments TCOM [1] as in Kajita et al. [27]. We call TCOM a trapdoor commitment
scheme if the following conditions hold.

4.1 Conditions of TCOM

Hiding. For the 𝑝𝑘 generated with KGentc (1𝑛), and any 𝑚, 𝑚′ ∈ M𝑛, statistical hiding
holds if the following ensembles are statistically indistinguishable in 𝑛:{

(𝜇, 𝑚, 𝑟) | 𝜇 = Comtc
𝑝𝑘 (𝑚; 𝑟); 𝑟 ← COINcom

}
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s≈
{
(𝜇′, 𝑚′, 𝑟 ′) | 𝜇′ = Comtc

𝑝𝑘 (𝑚′; 𝑟 ′); 𝑟 ′← COINcom
}
.

Computationally binding. For any polynomial-time adversary A,

𝜖bind :=Pr

(𝑚1, 𝑚2, 𝑟1, 𝑟2) ← A(𝑝𝑘);
(𝑝𝑘, 𝑡𝑘) ← KGentc (1𝑛) :
Comtc

𝑝𝑘 (𝑚1; 𝑟1)=Comtc
𝑝𝑘 (𝑚2; 𝑟2)∧(𝑚1≠𝑚2)


= negl(𝑛).

Trapdoor property. The algorithm KGentc for generating 𝑝𝑘 also outputs a trapdoor 𝑡𝑘 .
There is an efficient algorithm TComtc that, on inputting 𝑡𝑘, 𝑝𝑘 , outputs a commitment 𝜇,
and an algorithm TColtc that, on inputting any𝑚, produces 𝑟 such that 𝜇 = Comtc

𝑝𝑘 (𝑚; 𝑟).
The distribution of 𝜇 computed with TComtc is statistically indistinguishable from that
of commitments computed with Comtc,{

(𝜇, 𝑚, 𝑟) | 𝜇 = Comtc
𝑝𝑘 (𝑚; 𝑟); 𝑟 ← COINcom

}
s≈
{
(𝜇, 𝑚, 𝑟) | (𝜇, 𝜒) ← TComtc

𝑡 𝑘 (1𝑛); 𝑟 = TColtc𝑡 𝑘 (𝜇, 𝜒, 𝑚)
}
.

4.2 Construction

Let SIG1 be our signature scheme constructed by applying TCOM to SIG0, as illustrated
in Fig. 5. In the signing and verification algorithms of SIG1, commitments 𝜇 are regarded
as messages. The correctness of SIG1 can be demonstrated in the same manner as that
of SIG0.

4.3 Security Analysis

We demonstrate that SIG1 is EUF-CMA secure with TCOM by constructing adversary
Bbind, which breaks the computationally binding of TCOM, or adversary Beuf−xrma

SIG0
,

which breaks the EUF-XRMA security. We then show the following theorem. Note that
the following theorem does not depend on the tag-generation parameter 𝐶𝑖 .

Theorem 3. If TCOM = (KGentc,Comtc, TComtc, TColtc) is a trapdoor commitment and
SIG0 is EUF-XRMA secure, then SIG1 is EUF-CMA secure.

Proof. Let BEUF-XRMA
SIG0

be the adversary that can break the EUF-XRMA security
of SIG0, and let Bbind be the adversary that can break computationally binding for
TCOM. LetAEUF-CMA

SIG1
be the adversary that can break EUF-CMA security of SIG1. Let

𝜖EUF-XRMA
SIG0

= AdvEUF-XRMA
SIG0 ,B (𝑛) be an advantage of BEUF-XRMA

SIG0
, 𝜖bind be an advantage

of Bbind, and 𝜖EUF-CMA
SIG1

= AdvEUF-CMA
SIG1 ,A (𝑛) be an advantage of AEUF-CMA

SIG1
. We write

BEUF-XRMA with TCOM
SIG0

as the adversary against EUF-XRMA security with TCOM of SIG0.
We write the verification key and signing key of SIG1 as (𝑣𝑘, 𝑠𝑘) and those of SIG0 as
(𝑣𝑘0, 𝑠𝑘0). From the view ofAEUF-CMA

SIG1
, BEUF-XRMA

SIG0
and Bbind are statistically indistin-

guishable. We now show that if aAEUF-CMA
SIG1

that can break EUF-CMA security of SIG1

exists, then BEUF-XRMA with TCOM
SIG0

or Bbind exists.
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KGen(𝑛) Sign(𝑣𝑘, 𝑠𝑘, 𝑚) Vrfy(𝑣𝑘, 𝑚,𝝈)
A′ ← R1×𝑤

𝑞 𝑟 ← COINcom 𝜇 = Comtc
𝑝𝑘
(𝑚; 𝑟)

U← R1×𝑘
𝑞 𝜇 = Comtc

𝑝𝑘
(𝑚; 𝑟) 𝑡≤0 = 1

v0 ← R𝑞 𝑡≤0 = 1 For 𝑖 = 1 to 𝑑
{H[i] }𝑑𝑖=0 ← R𝑞 For 𝑖 = 1 to 𝑑 𝑡≤𝑖 = 𝑚 mod 𝐶𝑖
for 𝑖 = 0 to 𝑑 do 𝑡≤𝑖 = 𝜇 mod 𝐶𝑖 𝑡 [𝑖 ] = (𝑡≤𝑖 − 𝑡≤𝑖−1)𝑋 𝑖−1

(A[i] , S[i] )←GenTrap(A′,H, 𝑠) 𝑡 [𝑖 ] = (𝑡≤𝑖 − 𝑡≤𝑖−1)𝑋 𝑖−1 m = BtoR(𝑚)
A[𝑖 ] ← R1×𝑘

𝑞 A𝑡 = [A′ |A[0] +
∑𝑑
𝑖=1 𝑡 [𝑖 ]A[𝑖 ] ] compute A𝑡 , u0

(𝑡𝑘, 𝑝𝑘) ← KGentc (𝑛) H𝑡 = H[0] +
∑𝑑
𝑖=1 𝑡 [𝑖 ]H[𝑖 ] if | |𝝈 | | ≤ 𝑠

√
𝑛(𝑤 + 𝑘)

𝑣𝑘 = (A′, {A[i] ,H[i] }di=0, S𝑡 = S[0] +
∑𝑑
𝑖=1 𝑡 [𝑖 ]S[𝑖 ] and A𝑡𝝈 = u0

U, v0, 𝑝𝑘) 𝝁 = BtoR(𝜇) return 1
𝑠𝑘 = {S[i] }di=0 u0 = U𝜇 + v0 else
return (𝑣𝑘, 𝑠𝑘) 𝝈←SampleD(A𝑡 ,H𝑡 , St, u0, 𝑠) return 0

return 𝝈

Fig. 5. SIG1: EUF-CMA-secure signature scheme with TCOM

Setup: We consider TComtc
𝑡 𝑘 as MsgGen of EUF-XRMA. Then, commitments are

generated with auxiliary information such that (𝜇𝑖 , 𝑟 ′𝑖 ) ← TComtc
𝑡 𝑘 (1𝑛). The adversary

BEUF-XRMA with TCOM
SIG0

receives the verification key 𝑣𝑘0, commitments 𝜇𝑖 , and signatures
𝝈𝑖 of SIG0 for 1 ≤ 𝑖 ≤ 𝑄 and auxiliary information 𝜌𝑖 = (𝑝𝑘, 𝑡𝑘, 𝑟 ′𝑖 ), where 𝑝𝑘 is
the public key, 𝑡𝑘 is the trapdoor key for TCOM, and commitment 𝜇𝑖 satisfies 𝜇𝑖 =
Com𝑝𝑘 (𝑥𝑖; 𝑟 ′𝑖 ) for 𝑥𝑖 ∈ M𝑛. BEUF-XRMA with TCOM

SIG0
sets 𝑣𝑘 = (𝑣𝑘0, 𝑝𝑘) and sends 𝑣𝑘 to

AEUF-CMA
SIG1

.

Signing: AEUF-CMA
SIG1

makes 𝑄 signing queries. For 1 ≤ 𝑖 ≤ 𝑄, AEUF-CMA
SIG1

gives a mes-
sage𝑚𝑖 toBEUF-XRMA with TCOM

SIG0
. ThenBEUF-XRMA with TCOM

SIG0
computes 𝑟𝑖 = TColtc𝑡 𝑘 (𝜇𝑖 , 𝜒𝑖 ,

𝑚𝑖), where 𝑟𝑖 satisfies 𝜇𝑖 = Comtc
𝑝𝑘 (𝑚𝑖; 𝑟𝑖). In accordance with the statistical hiding

property of trapdoor commitments, from the view of AEUF-CMA
SIG1

, the 𝑟 that is generated
by both COINcom and TColtc𝑡 𝑘 are statistically indistinguishable.BEUF-XRMA with TCOM

SIG0
then

returns (𝝈𝑖 , 𝑟𝑖) corresponding to 𝑚𝑖 . The signatures that BEUF-XRMA with TCOM
SIG0

first re-
ceived as input are regarded as those of SIG1 since messages can be just replaced with
commitments.

Forgery ofAEUF-CMA
SIG1

: BEUF-XRMA with TCOM
SIG0

receives a forgery (𝑚∗,𝝈∗, 𝑟∗) of SIG1 from
AEUF-CMA

SIG1
, where𝑚∗ ∉ {𝑚1, . . . , 𝑚𝑞}.BEUF-XRMA with TCOM

SIG0
then computes commitment

𝜇∗ = Comtc
𝑝𝑘 (𝑚∗; 𝑟∗).

Case 1: breaking EUF-XRMA security of SIG0 In this case, 𝜇∗ ∉ {𝜇1, . . ., 𝜇𝑄},
BEUF-XRMA with TCOM

SIG0
outputs (𝜇∗,𝝈∗). This means the adversary succeeds in breaking

the EUF-XRMA with TCOM security of SIG0. This goes against the fact that no adversary
who breaks the EUF-XRMA security of SIG0 exists in Theorem 2.
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Case 2: breaking computationally binding In this case, 𝜇∗ ∈ {𝜇1, . . . , 𝜇𝑄}, Bbind

outputs (𝑚∗, 𝑟∗, 𝑚𝑖 , 𝑟𝑖) such that (𝜇∗ = 𝜇𝑖) ∩ (𝑚∗ ≠ 𝑚𝑖) for 1 ≤ 𝑖 ≤ 𝑄. This means
BEUF-XRMA with TCOM

SIG0
succeeds in breaking the computationally binding for trapdoor

commitment as Bbind.

Table 2. Comparison between our proposed scheme and DM14

Scheme Tag collisions |T𝑖 | 𝑑 |𝑣𝑘 | Reduction loss
DM14 1 2 ⌊𝛼𝑐𝑖 ⌋ ⌈log𝑐 (log2 (

2𝑄2

𝜖 ))⌉ 𝑂 (log 𝑛) ( 4𝑄
2

𝜖 )𝑐
SIG1 with 𝐶𝑖 = ⌊𝛼𝑐𝑖⌋ 𝜓 2 ⌊𝛼𝑐𝑖 ⌋ ⌈log𝑐 (log2 (

2𝑒𝑄
𝜓+1 ))⌉ 𝑂 (log 𝑛) ( 4𝑒𝑄𝜓+1 )

𝑐

SIG1 with 𝐶𝑖 = 𝑖 𝜓 2𝑖 ⌈log2 (
2𝑒𝑄
𝜓+1 )⌉ 𝑂 (𝑛) 4𝑒𝑄

𝜓+1

Analysis: Suppose that SIG1 is EUF-CMA secure. Then BEUF-XRMA with TCOM
SIG0

breaks
EUF-XRMA security when 𝜇∗ ∉ {𝜇1, . . . , 𝜇𝑞}, or Bbind breaks the computationally
binding for trapdoor commitments when 𝜇∗ ∈ {𝜇1, . . . , 𝜇𝑄}. Therefore, 𝜖EUF-CMA

SIG1
is

bounded by the sum of 𝜖EUF-XRMA
SIG0

and 𝜖bind. Hence,

𝜖EUF-CMA
SIG1

≤ 𝜖bind + 𝜖EUF-XRMA
SIG0

.

2

4.4 Reduction loss

We discuss the reduction loss in this section. For the advantage of the ring-SIS problem
𝜖 ring−SIS, in accordance with Theorems 2,

𝜖 ring−SIS =
1

#T𝑖∗
· 𝜖EUF-XRMA

SIG0
.

Because 𝜖EUF-XRMA
SIG0

≥ 𝜖EUF-CMA
SIG1

− 𝜖bind from Theorem 3,

𝜖 ring−SIS ≥ 1
#T𝑖∗
·
(
𝜖EUF-CMA

SIG1
− 𝜖bind

)
.

If 𝐶𝑖 = ⌊𝛼𝑐𝑖⌋, since #T𝑖∗ = Ω
((

𝜓+1
4𝑒𝑄

)𝑐)
,

𝜖EUF-CMA
SIG1

= O
((

4𝑒𝑄
𝜓 + 1

)𝑐)
· 𝜖 ring−SIS + 𝜖bind,

if 𝐶𝑖 = 𝑖, since #T𝑖∗ = Ω
(
𝜓+1
4𝑒𝑄

)
,

𝜖EUF-CMA
SIG1

= O
(

4𝑒𝑄
𝜓 + 1

)
· 𝜖 ring−SIS + 𝜖bind.
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Since the advantage of computationally binding is negligible and 𝜓 = Ω(𝑛), the whole
reduction loss to the ring-SIS problem is 𝑂

((
𝑄
𝑛

)𝑐)
if 𝐶𝑖 = ⌊𝛼𝑐𝑖⌋ or 𝑂

(
𝑄
𝑛

)
if 𝐶𝑖 = 𝑖.

We give a comparison between our proposed signature scheme with each 𝐶𝑖 and DM14
in Table 2. The reduction loss is related to 𝜓 and 𝑄, and there is an asymptotic relation
between them, 𝜓 = 𝑂 (log(𝑄)). Consequently, we can eliminate 𝜖 from the reduction
loss of DM14, 𝑂

((
𝑄2

𝜖

)𝑐)
.

5 Conclusion

We developed a short lattice-based signature scheme under the ring-SIS assumption
based on DM14. Our proposed signature scheme has a short signature size of 𝑂 (1),
achieves a verification key size of 𝑂 (log 𝑛), and reduction loss of 𝑂

((
𝑄
𝑛

)𝑐)
when tag-

generation parameter 𝐶𝑖 = ⌊𝛼𝑐𝑖⌋. Alternately, our proposed signature scheme achieves
a verification key size of 𝑂 (𝑛) and reduction loss of 𝑂

(
𝑄
𝑛

)
when 𝐶𝑖 = 𝑖. Its reduction

loss is the tightest among those of known short lattice-based signature schemes with
signing keys of 𝑂 (1) only under the standard assumption (i.e., without pseudorandom
functions) in the standard model. We also hope that this paper will contribute to the
development of security proofs in the standard model for lattice tag-based signatures.
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