3,273 research outputs found

    Small Cuts and Connectivity Certificates: A Fault Tolerant Approach

    Get PDF
    We revisit classical connectivity problems in the {CONGEST} model of distributed computing. By using techniques from fault tolerant network design, we show improved constructions, some of which are even "local" (i.e., with O~(1) rounds) for problems that are closely related to hard global problems (i.e., with a lower bound of Omega(Diam+sqrt{n}) rounds). Distributed Minimum Cut: Nanongkai and Su presented a randomized algorithm for computing a (1+epsilon)-approximation of the minimum cut using O~(D +sqrt{n}) rounds where D is the diameter of the graph. For a sufficiently large minimum cut lambda=Omega(sqrt{n}), this is tight due to Das Sarma et al. [FOCS \u2711], Ghaffari and Kuhn [DISC \u2713]. - Small Cuts: A special setting that remains open is where the graph connectivity lambda is small (i.e., constant). The only lower bound for this case is Omega(D), with a matching bound known only for lambda <= 2 due to Pritchard and Thurimella [TALG \u2711]. Recently, Daga, Henzinger, Nanongkai and Saranurak [STOC \u2719] raised the open problem of computing the minimum cut in poly(D) rounds for any lambda=O(1). In this paper, we resolve this problem by presenting a surprisingly simple algorithm, that takes a completely different approach than the existing algorithms. Our algorithm has also the benefit that it computes all minimum cuts in the graph, and naturally extends to vertex cuts as well. At the heart of the algorithm is a graph sampling approach usually used in the context of fault tolerant (FT) design. - Deterministic Algorithms: While the existing distributed minimum cut algorithms are randomized, our algorithm can be made deterministic within the same round complexity. To obtain this, we introduce a novel definition of universal sets along with their efficient computation. This allows us to derandomize the FT graph sampling technique, which might be of independent interest. - Computation of all Edge Connectivities: We also consider the more general task of computing the edge connectivity of all the edges in the graph. In the output format, it is required that the endpoints u,v of every edge (u,v) learn the cardinality of the u-v cut in the graph. We provide the first sublinear algorithm for this problem for the case of constant connectivity values. Specifically, by using the recent notion of low-congestion cycle cover, combined with the sampling technique, we compute all edge connectivities in poly(D) * 2^{O(sqrt{log n log log n})} rounds. Sparse Certificates: For an n-vertex graph G and an integer lambda, a lambda-sparse certificate H is a subgraph H subseteq G with O(lambda n) edges which is lambda-connected iff G is lambda-connected. For D-diameter graphs, constructions of sparse certificates for lambda in {2,3} have been provided by Thurimella [J. Alg. \u2797] and Dori [PODC \u2718] respectively using O~(D) number of rounds. The problem of devising such certificates with o(D+sqrt{n}) rounds was left open by Dori [PODC \u2718] for any lambda >= 4. Using connections to fault tolerant spanners, we considerably improve the round complexity for any lambda in [1,n] and epsilon in (0,1), by showing a construction of (1-epsilon)lambda-sparse certificates with O(lambda n) edges using only O(1/epsilon^2 * log^{2+o(1)} n) rounds

    Graph Sparsification by Edge-Connectivity and Random Spanning Trees

    Full text link
    We present new approaches to constructing graph sparsifiers --- weighted subgraphs for which every cut has the same value as the original graph, up to a factor of (1±ϵ)(1 \pm \epsilon). Our first approach independently samples each edge uvuv with probability inversely proportional to the edge-connectivity between uu and vv. The fact that this approach produces a sparsifier resolves a question posed by Bencz\'ur and Karger (2002). Concurrent work of Hariharan and Panigrahi also resolves this question. Our second approach constructs a sparsifier by forming the union of several uniformly random spanning trees. Both of our approaches produce sparsifiers with O(nlog2(n)/ϵ2)O(n \log^2(n)/\epsilon^2) edges. Our proofs are based on extensions of Karger's contraction algorithm, which may be of independent interest

    Sketching Cuts in Graphs and Hypergraphs

    Full text link
    Sketching and streaming algorithms are in the forefront of current research directions for cut problems in graphs. In the streaming model, we show that (1ϵ)(1-\epsilon)-approximation for Max-Cut must use n1O(ϵ)n^{1-O(\epsilon)} space; moreover, beating 4/54/5-approximation requires polynomial space. For the sketching model, we show that rr-uniform hypergraphs admit a (1+ϵ)(1+\epsilon)-cut-sparsifier (i.e., a weighted subhypergraph that approximately preserves all the cuts) with O(ϵ2n(r+logn))O(\epsilon^{-2} n (r+\log n)) edges. We also make first steps towards sketching general CSPs (Constraint Satisfaction Problems)

    Distributed Edge Connectivity in Sublinear Time

    Full text link
    We present the first sublinear-time algorithm for a distributed message-passing network sto compute its edge connectivity λ\lambda exactly in the CONGEST model, as long as there are no parallel edges. Our algorithm takes O~(n11/353D1/353+n11/706)\tilde O(n^{1-1/353}D^{1/353}+n^{1-1/706}) time to compute λ\lambda and a cut of cardinality λ\lambda with high probability, where nn and DD are the number of nodes and the diameter of the network, respectively, and O~\tilde O hides polylogarithmic factors. This running time is sublinear in nn (i.e. O~(n1ϵ)\tilde O(n^{1-\epsilon})) whenever DD is. Previous sublinear-time distributed algorithms can solve this problem either (i) exactly only when λ=O(n1/8ϵ)\lambda=O(n^{1/8-\epsilon}) [Thurimella PODC'95; Pritchard, Thurimella, ACM Trans. Algorithms'11; Nanongkai, Su, DISC'14] or (ii) approximately [Ghaffari, Kuhn, DISC'13; Nanongkai, Su, DISC'14]. To achieve this we develop and combine several new techniques. First, we design the first distributed algorithm that can compute a kk-edge connectivity certificate for any k=O(n1ϵ)k=O(n^{1-\epsilon}) in time O~(nk+D)\tilde O(\sqrt{nk}+D). Second, we show that by combining the recent distributed expander decomposition technique of [Chang, Pettie, Zhang, SODA'19] with techniques from the sequential deterministic edge connectivity algorithm of [Kawarabayashi, Thorup, STOC'15], we can decompose the network into a sublinear number of clusters with small average diameter and without any mincut separating a cluster (except the `trivial' ones). Finally, by extending the tree packing technique from [Karger STOC'96], we can find the minimum cut in time proportional to the number of components. As a byproduct of this technique, we obtain an O~(n)\tilde O(n)-time algorithm for computing exact minimum cut for weighted graphs.Comment: Accepted at 51st ACM Symposium on Theory of Computing (STOC 2019

    Optimal lower bounds for universal relation, and for samplers and finding duplicates in streams

    Full text link
    In the communication problem UR\mathbf{UR} (universal relation) [KRW95], Alice and Bob respectively receive x,y{0,1}nx, y \in\{0,1\}^n with the promise that xyx\neq y. The last player to receive a message must output an index ii such that xiyix_i\neq y_i. We prove that the randomized one-way communication complexity of this problem in the public coin model is exactly Θ(min{n,log(1/δ)log2(nlog(1/δ))})\Theta(\min\{n,\log(1/\delta)\log^2(\frac n{\log(1/\delta)})\}) for failure probability δ\delta. Our lower bound holds even if promised support(y)support(x)\mathop{support}(y)\subset \mathop{support}(x). As a corollary, we obtain optimal lower bounds for p\ell_p-sampling in strict turnstile streams for 0p<20\le p < 2, as well as for the problem of finding duplicates in a stream. Our lower bounds do not need to use large weights, and hold even if promised x{0,1}nx\in\{0,1\}^n at all points in the stream. We give two different proofs of our main result. The first proof demonstrates that any algorithm A\mathcal A solving sampling problems in turnstile streams in low memory can be used to encode subsets of [n][n] of certain sizes into a number of bits below the information theoretic minimum. Our encoder makes adaptive queries to A\mathcal A throughout its execution, but done carefully so as to not violate correctness. This is accomplished by injecting random noise into the encoder's interactions with A\mathcal A, which is loosely motivated by techniques in differential privacy. Our second proof is via a novel randomized reduction from Augmented Indexing [MNSW98] which needs to interact with A\mathcal A adaptively. To handle the adaptivity we identify certain likely interaction patterns and union bound over them to guarantee correct interaction on all of them. To guarantee correctness, it is important that the interaction hides some of its randomness from A\mathcal A in the reduction.Comment: merge of arXiv:1703.08139 and of work of Kapralov, Woodruff, and Yahyazade
    corecore