30,971 research outputs found
A circumferentially flanged tibial tray minimizes bone-tray shear micromotion
Aseptic loosening of the tibial component is the major complication of total knee arthroplasty. There is an association between early excessive shear micromotion between the bone and the tray of the tibial component and late aseptic loosening. Using non-linear finite element analysis, whether a tibial tray with a circumferentially flanged rim and a mating cut in the proximal tibia could minimize bone-tray shear micromotion was considered. fifteen competing tray designs with various degrees of flange curvature were assessed with the aim of minimizing bone-tray shear micromotion. A trade-off was found between reducing micromotion and increasing peripheral cancellous bone stresses. It was found that, within the limitations of the study, there was a theoretical design that could virtually eliminate micromotion due to axial loads, with minimal bone removal and without the use of screws or pegs
Lubrication model of a knee prosthesis, with non newtonian fluid and porous rough material
Tibial component of knee prostheses, made of ultra high molecular weight polyethylene (UHMWPE), experiences a high degree of wear and may be expected to last twelve years on average. In this work, a steady state one-dimensional lubrication model of a knee prosthesis is solved through a nu-merical technique based on the Finite Element Method. The model takes into account a non Newto-nian synovial fluid, its ultra filtration mechanism and the surface roughness of a porous elastic layer on the tibial component. The benefits of a porous compliant material placed at the top of the metallic tibial component are shown taking into account the stiffness and exudation capacity of the material and hyaluronic acid concentration of synovial fluid.Fil: Berli, Marcelo Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; ArgentinaFil: Campana, Diego Martin. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; ArgentinaFil: Ubal, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Di Paolo, José. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentin
All-polyethylene tibial components in TKA in rheumatoid arthritis: a 25-year follow-up study
PURPOSE: There is renewed interest in the all-polyethylene tibial component in total knee arthroplasty (TKA). Long-term results of this prosthesis in rheumatoid arthritis (RA) patients, however, are limited. Therefore, we studied 104 primary cemented all-polyethylene tibial TKA in 80 consecutive RA patients for up to 25 years to determine the long-term survival of all-polyethylene tibial components in patients suffering from end stage RA. METHODS: We estimated revision rates according the revision rate per 100 observed component years used in national joint registries. Kaplan-Meier was used to estimate survival curves. RESULTS: During the 25-year follow-up, three revisions for tibial component loosening were performed. The mean revision rate of all-polyethylene tibial components with revision for aseptic loosening as the endpoint was 0.09 per 100 observed component years. This corresponds to a revision rate of 0.9% after ten years and 2.25% after 25 years. Survivorship according to Kaplan-Meier was 100% at ten years and 87.5% at 25 years [95% confidence interval (CI) 64.6-100)]. CONCLUSION: This study shows good long-term results of all-polyethylene tibial TKA in patients with RA. RA patients with multiple-joint inflammation may be less physically active than osteoarthritis patients, resulting in a lower demand on the prosthesis, and these patients may, indeed, be good candidates for all-polyethylene tibial TKA. Our results suggest that all-polyethylene tibial TKA could be a successful and cost-saving treatment for end-stage knee arthritis in RA patients.Optimising joint reconstruction management in arthritis and bone tumour patient
Popliteus impingement after TKA may occur with well-sized prostheses
To determine the mechanisms and extents of popliteus impingements before and after TKA and to investigate the influence of implant sizing. The hypotheses were that (1) popliteus impingements after TKA may occur at both the tibia and the femur, and (2) even with an apparently well-sized prosthesis, popliteal tracking during knee flexion is modified compared to the preoperative situation.
The location of the popliteus in three cadaver knees was measured using computed tomography, before and after implantation of plastic TKA replicas, by injecting the tendon with radiopaque liquid. The pre- and post-operative positions of the popliteus were compared from full extension to deep flexion using normosized, oversized, and undersized implants (one size increments).
At the tibia, TKA caused the popliteus to translate posteriorly, mostly in full extension: 4.1 +/- 2 mm for normosized implants, and 15.8 +/- 3 mm with oversized implants, but no translations were observed when using undersized implants. At the femur, TKA caused the popliteus to translate laterally at deeper flexion angles, peaking between 80A degrees and 120A degrees: 2 +/- 0.4 mm for normosized implants and 2.6 +/- 0.5 mm with oversized implants. Three-dimensional analysis revealed prosthetic overhang at the posterosuperior corner of normosized and oversized femoral components (respectively, up to 2.9 mm and 6.6 mm).
A well-sized tibial component modifies popliteal tracking, while an undersized tibial component maintains more physiologic patterns. Oversizing shifts the popliteus considerably throughout the full arc of motion. This study suggests that both femoro- and tibio-popliteus impingements could play a role in residual pain and stiffness after TKA
Quantifying the Tibiofemoral Joint Space Using X-ray Tomosynthesis
Purpose: Digital x-ray tomosynthesis (DTS) has the potential to provide 3D information about the knee joint in a load-bearing posture, which may improve diagnosis and monitoring of knee osteoarthritis compared with projection radiography, the current standard of care. Manually quantifying and visualizing the joint space width (JSW) from 3D tomosynthesis datasets may be challenging. This work developed a semiautomated algorithm for quantifying the 3D tibiofemoral JSW from reconstructed DTS images. The algorithm was validated through anthropomorphic phantom experiments and applied to three clinical datasets. Methods: A user-selected volume of interest within the reconstructed DTS volume was enhanced with 1D multiscale gradient kernels. The edge-enhanced volumes were divided by polarity into tibial and femoral edge maps and combined across kernel scales. A 2D connected components algorithm was performed to determine candidate tibial and femoral edges. A 2D joint space width map (JSW) was constructed to represent the 3D tibiofemoral joint space. To quantify the algorithm accuracy, an adjustable knee phantom was constructed, and eleven posterior–anterior (PA) and lateral DTS scans were acquired with the medial minimum JSW of the phantom set to 0–5 mm in 0.5 mm increments (VolumeRadTM, GE Healthcare, Chalfont St. Giles, United Kingdom). The accuracy of the algorithm was quantified by comparing the minimum JSW in a region of interest in the medial compartment of the JSW map to the measured phantom setting for each trial. In addition, the algorithm was applied to DTS scans of a static knee phantom and the JSW map compared to values estimated from a manually segmented computed tomography (CT) dataset. The algorithm was also applied to three clinical DTS datasets of osteoarthritic patients. Results: The algorithm segmented the JSW and generated a JSW map for all phantom and clinical datasets. For the adjustable phantom, the estimated minimum JSW values were plotted against the measured values for all trials. A linear fit estimated a slope of 0.887 (R2¼0.962) and a mean error across all trials of 0.34 mm for the PA phantom data. The estimated minimum JSW values for the lateral adjustable phantom acquisitions were found to have low correlation to the measured values (R2¼0.377), with a mean error of 2.13 mm. The error in the lateral adjustable-phantom datasets appeared to be caused by artifacts due to unrealistic features in the phantom bones. JSW maps generated by DTS and CT varied by a mean of 0.6 mm and 0.8 mm across the knee joint, for PA and lateral scans. The tibial and femoral edges were successfully segmented and JSW maps determined for PA and lateral clinical DTS datasets. Conclusions: A semiautomated method is presented for quantifying the 3D joint space in a 2D JSW map using tomosynthesis images. The proposed algorithm quantified the JSW across the knee joint to sub-millimeter accuracy for PA tomosynthesis acquisitions. Overall, the results suggest that x-ray tomosynthesis may be beneficial for diagnosing and monitoring disease progression or treatment of osteoarthritis by providing quantitative images of JSW in the load-bearing knee
Stable sulforaphane protects against gait anomalies and modifies bone microarchitecture in the spontaneous STR/Ort model of osteoarthritis
Osteoarthritis (OA), affecting joints and bone, causes physical gait disability with huge socio-economic burden; treatment remains palliative. Roles for antioxidants in protecting against such chronic disorders have been examined previously. Sulforaphane is a naturally occurring antioxidant. Herein, we explore whether SFX-01®, a stable synthetic form of sulforaphane, modifies gait, bone architecture and slows/reverses articular cartilage destruction in a spontaneous OA model in STR/Ort mice. Sixteen mice (n = 8/group) were orally treated for 3 months with either 100 mg/kg SFX-01® or vehicle. Gait was recorded, tibiae were microCT scanned and analysed. OA lesion severity was graded histologically. The effect of SFX-01® on bone turnover markers in vivo was complemented by in vitro bone formation and resorption assays. Analysis revealed development of OA-related gait asymmetry in vehicle-treated STR/Ort mice, which did not emerge in SFX-01®-treated mice. We found significant improvements in trabecular and cortical bone. Despite these marked improvements, we found that histologically-graded OA severity in articular cartilage was unmodified in treated mice. These changes are also reflected in anabolic and anti-catabolic actions of SFX-01® treatment as reflected by alteration in serum markers as well as changes in primary osteoblast and osteoclast-like cells in vitro. We report that SFX-01® improves bone microarchitecture in vivo, produces corresponding changes in bone cell behaviour in vitro and leads to greater symmetry in gait, without marked effects on cartilage lesion severity in STR/Ort osteoarthritic mice. Our findings support both osteotrophic roles and novel beneficial gait effects for SFX-01® in this model of spontaneous OA
Change-point detection of peak tibial acceleration in overground running retraining
A method is presented for detecting changes in the axial peak tibial acceleration while adapting to self-discovered lower-impact running. Ten runners with high peak tibial acceleration were equipped with a wearable auditory biofeedback system. They ran on an athletic track without and with real-time auditory biofeedback at the instructed speed of 3.2 m·s−1. Because inter-subject variation may underline the importance of individualized retraining, a change-point analysis was used for each subject. The tuned change-point application detected major and subtle changes in the time series. No changes were found in the no-biofeedback condition. In the biofeedback condition, a first change in the axial peak tibial acceleration occurred on average after 309 running gait cycles (3′40″). The major change was a mean reduction of 2.45 g which occurred after 699 running gait cycles (8′04″) in this group. The time needed to achieve the major reduction varied considerably between subjects. Because of the individualized approach to gait retraining and its relatively quick response due to a strong sensorimotor coupling, we want to highlight the potential of a stand-alone biofeedback system that provides real-time, continuous, and auditory feedback in response to the axial peak tibial acceleration for lower-impact running
Preventing tibial and talar component contact during implantation of a total ankle replacement.
The Knee Arthroplasty Trial (KAT) : design features, baseline characteristics and two-year functional outcomes after alternative approaches to knee replacement
Background: The aim of continued development of total knee replacement systems has been the further improvement of the quality of life and increasing the duration of prosthetic survival. Our goal was to evaluate the effects of several design features, including metal backing of the tibial component, patellar resurfacing, and a mobile bearing between the tibial and femoral components, on the function and survival of the implant. Methods: A pragmatic, multicenter, randomized, controlled trial involving 116 surgeons in thirty-four centers in the United Kingdom was performed; 2352 participants were randomly allocated to be treated with or without a metal backing of the tibial component (409), with or without patellar resurfacing (1715), and/or with or without a mobile bearing (539). Randomization to more than one comparison was allowed. The primary outcome measures were the Oxford Knee Score (OKS), Short Form-12, EuroQol-5D, and the need for additional surgery. The results up to two years postoperatively are reported. Results: Functional status and quality-of-life scores were low at baseline but improved markedly across all trial groups following knee replacement (mean overall OKS, 17.98 points at baseline and 34.82 points at two years). Most of the change was observed at three months after the surgery. Six percent of the patients had additional knee surgery within two years. There was no evidence of differences in clinical, functional, or quality-of-life measures between the randomized groups at two years. Conclusions: Patients have substantial improvement following total knee replacement. This is the first adequately powered randomized controlled trial, of which we are aware, in which the effects of metal backing, patellar resurfacing, and a mobile bearing were investigated. We found no evidence of an effect of these variants on the rate of early complications or on functional recovery up to two years after total knee replacement. Level of Evidence: Therapeutic Level I. See Instructions to Authors for a complete description of levels of evidence.NIHR Health Technology Assessment Programme (Project Number 95/10/01); Howmedica Osteonics; Zimmer; DePuy, a Johnson and Johnson company; Corin Medical; Smith and Nephew Healthcare. Biomet Merck; and Wright CremascoliPeer reviewe
- …
