121 research outputs found

    Thwarting inside jamming attacks on wireless broadcast communications

    Full text link
    We address the problem of jamming-resistant broadcast com-munications under an internal threat model. We propose a time-delayed broadcast scheme (TDBS), which implements the broadcast operation as a series of unicast transmissions, distributed in frequency and time. TDBS does not rely on commonly shared secrets, or the existence of jamming-immune control channels for coordinating broadcasts. In-stead, each node follows a unique pseudo-noise (PN) fre-quency hopping sequence. Contrary to conventional PN se-quences designed for multi-access systems, our sequences ex-hibit high correlation to enable broadcast. Moreover, their design limits the information leakage due to the exposure of a subset of sequences by compromised nodes. We map the problem of constructing such PN sequences to the 1-factorization problem for complete graphs. Our evaluation results show that TDBS can maintain broadcast communi-cations in the presence of inside jammers

    Challenges of Misbehavior Detection in Industrial Wireless Networks

    Get PDF
    In recent years, wireless technologies are increasingly adopted in many application domains that were either unconnected before or exclusively used cable networks. This paradigm shift towards - often ad-hoc - wireless communication has led to significant benefits in terms of flexibility and mobility. Alongside with these benefits, however, arise new attack vectors, which cannot be mitigated by traditional security measures. Hence, mechanisms that are orthogonal to cryptographic security techniques are necessary in order to detect adversaries. In traditional networks, such mechanisms are subsumed under the term "intrusion detection system" and many proposals have been implemented for different application domains. More recently, the term "misbehavior detection" has been coined to encompass detection mechanisms especially for attacks in wireless networks. In this paper, we use industrial wireless networks as an exemplary application domain to discuss new directions and future challenges in detecting insider attacks. To that end, we review existing work on intrusion detection in mobile ad-hoc networks. We focus on physical-layer-based detection mechanisms as these are a particularly interesting research direction that had not been reasonable before widespread use of wireless technology.Peer Reviewe

    Synoptic analysis techniques for intrusion detection in wireless networks

    Get PDF
    Current system administrators are missing intrusion alerts hidden by large numbers of false positives. Rather than accumulation more data to identify true alerts, we propose an intrusion detection tool that e?ectively uses select data to provide a picture of ?network health?. Our hypothesis is that by utilizing the data available at both the node and cooperative network levels we can create a synoptic picture of the network providing indications of many intrusions or other network issues. Our major contribution is to provide a revolutionary way to analyze node and network data for patterns, dependence, and e?ects that indicate network issues. We collect node and network data, combine and manipulate it, and tease out information about the state of the network. We present a method based on utilizing the number of packets sent, number of packets received, node reliability, route reliability, and entropy to develop a synoptic picture of the network health in the presence of a sinkhole and a HELLO Flood attacker. This method conserves network throughput and node energy by requiring no additional control messages to be sent between the nodes unless an attacker is suspected. We intend to show that, although the concept of an intrusion detection system is not revolutionary, the method in which we analyze the data for clues about network intrusion and performance is highly innovative
    corecore