368 research outputs found

    Relaying in the Internet of Things (IoT): A Survey

    Get PDF
    The deployment of relays between Internet of Things (IoT) end devices and gateways can improve link quality. In cellular-based IoT, relays have the potential to reduce base station overload. The energy expended in single-hop long-range communication can be reduced if relays listen to transmissions of end devices and forward these observations to gateways. However, incorporating relays into IoT networks faces some challenges. IoT end devices are designed primarily for uplink communication of small-sized observations toward the network; hence, opportunistically using end devices as relays needs a redesign of both the medium access control (MAC) layer protocol of such end devices and possible addition of new communication interfaces. Additionally, the wake-up time of IoT end devices needs to be synchronized with that of the relays. For cellular-based IoT, the possibility of using infrastructure relays exists, and noncellular IoT networks can leverage the presence of mobile devices for relaying, for example, in remote healthcare. However, the latter presents problems of incentivizing relay participation and managing the mobility of relays. Furthermore, although relays can increase the lifetime of IoT networks, deploying relays implies the need for additional batteries to power them. This can erode the energy efficiency gain that relays offer. Therefore, designing relay-assisted IoT networks that provide acceptable trade-offs is key, and this goes beyond adding an extra transmit RF chain to a relay-enabled IoT end device. There has been increasing research interest in IoT relaying, as demonstrated in the available literature. Works that consider these issues are surveyed in this paper to provide insight into the state of the art, provide design insights for network designers and motivate future research directions

    Efficiency Maximization for UAV-Enabled Mobile Relaying Systems with Laser Charging

    Full text link
    This work studies the joint problem of power and trajectory optimization in an unmanned aerial vehicle (UAV)-enabled mobile relaying system. In the considered system, in order to provide convenient and sustainable energy supply to the UAV relay, we consider the deployment of a power beacon (PB) which can wirelessly charge the UAV and it is realized by a properly designed laser charging system. To this end, we propose an efficiency (the weighted sum of the energy efficiency during information transmission and wireless power transmission efficiency) maximization problem by optimizing the source/UAV/PB transmit powers along with the UAV's trajectory. This optimization problem is also subject to practical mobility constraints, as well as the information-causality constraint and energy-causality constraint at the UAV. Different from the commonly used alternating optimization (AO) algorithm, two joint design algorithms, namely: the concave-convex procedure (CCCP) and penalty dual decomposition (PDD)-based algorithms, are presented to address the resulting non-convex problem, which features complex objective function with multiple-ratio terms and coupling constraints. These two very different algorithms are both able to achieve a stationary solution of the original efficiency maximization problem. Simulation results validate the effectiveness of the proposed algorithms.Comment: 33 pages, 8 figures, accepted for publication in IEEE Transactions on Wireless Communication

    Throughput Maximization for UAV-Aided Backscatter Communication Networks

    Get PDF
    This paper investigates unmanned aerial vehicle (UAV)-aided backscatter communication (BackCom) networks, where the UAV is leveraged to help the backscatter device (BD) forward signals to the receiver. Based on the presence or absence of a direct link between BD and receiver, two protocols, namely transmit-backscatter (TB) protocol and transmit-backscatter-relay (TBR) protocol, are proposed to utilize the UAV to assist the BD. In particular, we formulate the system throughput maximization problems for the two protocols by jointly optimizing the time allocation, reflection coefficient and UAV trajectory. Different static/dynamic circuit power consumption models for the two protocols are analyzed. The resulting optimization problems are shown to be non-convex, which are challenging to solve. We first consider the dynamic circuit power consumption model, and decompose the original problems into three sub-problems, namely time allocation optimization with fixed UAV trajectory and reflection coefficient, reflection coefficient optimization with fixed UAV trajectory and time allocation, and UAV trajectory optimization with fixed reflection coefficient and time allocation. Then, an efficient iterative algorithm is proposed for both protocols by leveraging the block coordinate descent method and successive convex approximation (SCA) techniques. In addition, for the static circuit power consumption model, we obtain the optimal time allocation with a given reflection coefficient and UAV trajectory and the optimal reflection coefficient with low computational complexity by using the Lagrangian dual method. Simulation results show that the proposed protocols are able to achieve significant throughput gains over the compared benchmarks
    • …
    corecore