14 research outputs found

    Wireless Networks with Energy Harvesting and Power Transfer: Joint Power and Time Allocation

    Full text link
    In this paper, we consider wireless powered communication networks which could operate perpetually, as the base station (BS) broadcasts energy to the multiple energy harvesting (EH) information transmitters. These employ "harvest then transmit" mechanism, as they spend all of their energy harvested during the previous BS energy broadcast to transmit the information towards the BS. Assuming time division multiple access (TDMA), we propose a novel transmission scheme for jointly optimal allocation of the BS broadcasting power and time sharing among the wireless nodes, which maximizes the overall network throughput, under the constraint of average transmit power and maximum transmit power at the BS. The proposed scheme significantly outperforms "state of the art" schemes that employ only the optimal time allocation. If a single EH transmitter is considered, we generalize the optimal solutions for the case of fixed circuit power consumption, which refers to a much more practical scenario.Comment: 5 pages, 2 figures in IEEE Signal Processing Letters, vol. 23, no. 1, January 201

    A Learning Theoretic Approach to Energy Harvesting Communication System Optimization

    Full text link
    A point-to-point wireless communication system in which the transmitter is equipped with an energy harvesting device and a rechargeable battery, is studied. Both the energy and the data arrivals at the transmitter are modeled as Markov processes. Delay-limited communication is considered assuming that the underlying channel is block fading with memory, and the instantaneous channel state information is available at both the transmitter and the receiver. The expected total transmitted data during the transmitter's activation time is maximized under three different sets of assumptions regarding the information available at the transmitter about the underlying stochastic processes. A learning theoretic approach is introduced, which does not assume any a priori information on the Markov processes governing the communication system. In addition, online and offline optimization problems are studied for the same setting. Full statistical knowledge and causal information on the realizations of the underlying stochastic processes are assumed in the online optimization problem, while the offline optimization problem assumes non-causal knowledge of the realizations in advance. Comparing the optimal solutions in all three frameworks, the performance loss due to the lack of the transmitter's information regarding the behaviors of the underlying Markov processes is quantified

    Energy Harvesting Broadband Communication Systems with Processing Energy Cost

    Full text link
    Communication over a broadband fading channel powered by an energy harvesting transmitter is studied. Assuming non-causal knowledge of energy/data arrivals and channel gains, optimal transmission schemes are identified by taking into account the energy cost of the processing circuitry as well as the transmission energy. A constant processing cost for each active sub-channel is assumed. Three different system objectives are considered: i) throughput maximization, in which the total amount of transmitted data by a deadline is maximized for a backlogged transmitter with a finite capacity battery; ii) energy maximization, in which the remaining energy in an infinite capacity battery by a deadline is maximized such that all the arriving data packets are delivered; iii) transmission completion time minimization, in which the delivery time of all the arriving data packets is minimized assuming infinite size battery. For each objective, a convex optimization problem is formulated, the properties of the optimal transmission policies are identified, and an algorithm which computes an optimal transmission policy is proposed. Finally, based on the insights gained from the offline optimizations, low-complexity online algorithms performing close to the optimal dynamic programming solution for the throughput and energy maximization problems are developed under the assumption that the energy/data arrivals and channel states are known causally at the transmitter.Comment: published in IEEE Transactions on Wireless Communication

    Source-Channel Coding under Energy, Delay and Buffer Constraints

    Get PDF
    Source-channel coding for an energy limited wireless sensor node is investigated. The sensor node observes independent Gaussian source samples with variances changing over time slots and transmits to a destination over a flat fading channel. The fading is constant during each time slot. The compressed samples are stored in a finite size data buffer and need to be delivered in at most dd time slots. The objective is to design optimal transmission policies, namely, optimal power and distortion allocation, over the time slots such that the average distortion at destination is minimized. In particular, optimal transmission policies with various energy constraints are studied. First, a battery operated system in which sensor node has a finite amount of energy at the beginning of transmission is investigated. Then, the impact of energy harvesting, energy cost of processing and sampling are considered. For each energy constraint, a convex optimization problem is formulated, and the properties of optimal transmission policies are identified. For the strict delay case, d=1d=1, 2D2D waterfilling interpretation is provided. Numerical results are presented to illustrate the structure of the optimal transmission policy, to analyze the effect of delay constraints, data buffer size, energy harvesting, processing and sampling costs.Comment: 30 pages, 15 figures. Submitted to IEEE Transactions on Wireless Communication

    Optimal Sensing and Transmission in Energy Harvesting Sensor Networks

    Get PDF
    Sensor networks equipped with energy harvesting (EH) devices have attracted great attentions recently. Compared with conventional sensor networks powered by batteries, the energy harvesting abilities of the sensor nodes make sustainable and environment-friendly sensor networks possible. However, the random, scarce and non-uniform energy supply features also necessitate a completely different approach to energy management. A typical EH wireless sensor node consists of an EH module that converts ambient energy to electrical energy, which is stored in a rechargeable battery, and will be used to power the sensing and transmission operations of the sensor. Therefore, both sensing and transmission are subject to the stochastic energy constraint imposed by the EH process. In this dissertation, we investigate optimal sensing and transmission policies for EH sensor networks under such constraints. For EH sensing, our objective is to understand how the temporal and spatial variabilities of the EH processes would affect the sensing performance of the network, and how sensor nodes should coordinate their data collection procedures with each other to cope with the random and non-uniform energy supply and provide reliable sensing performance with analytically provable guarantees. Specifically, we investigate optimal sensing policies for a single sensor node with infinite and finite battery sizes in Chapter 2, status updating/transmission strategy of an EH Source in Chapter 3, and a collaborative sensing policy for a multi-node EH sensor network in Chapter 4. For EH communication, our objective is to evaluate the impacts of stochastic variability of the EH process and practical battery usage constraint on the EH systems, and develop optimal transmission policies by taking such impacts into consideration. Specifically, we consider throughput optimization in an EH system under battery usage constraint in Chapter 5

    Enhancing the performance of energy harvesting wireless communications using optimization and machine learning

    Get PDF
    The motivation behind this thesis is to provide efficient solutions for energy harvesting communications. Firstly, an energy harvesting underlay cognitive radio relaying network is investigated. In this context, the secondary network is an energy harvesting network. Closed-form expressions are derived for transmission power of secondary source and relay that maximizes the secondary network throughput. Secondly, a practical scenario in terms of information availability about the environment is investigated. We consider a communications system with a source capable of harvesting solar energy. Two cases are considered based on the knowledge availability about the underlying processes. When this knowledge is available, an algorithm using this knowledge is designed to maximize the expected throughput, while reducing the complexity of traditional methods. For the second case, when the knowledge about the underlying processes is unavailable, reinforcement learning is used. Thirdly, a number of learning architectures for reinforcement learning are introduced. They are called selector-actor-critic, tuner-actor-critic, and estimator-selector-actor-critic. The goal of the selector-actor-critic architecture is to increase the speed and the efficiency of learning an optimal policy by approximating the most promising action at the current state. The tuner-actor-critic aims at improving the learning process by providing the actor with a more accurate estimation about the value function. Estimator-selector-actor-critic is introduced to support intelligent agents. This architecture mimics rational humans in the way of analyzing available information, and making decisions. Then, a harvesting communications system working in an unknown environment is evaluated when it is supported by the proposed architectures. Fourthly, a realistic energy harvesting communications system is investigated. The state and action spaces of the underlying Markov decision process are continuous. Actor-critic is used to optimize the system performance. The critic uses a neural network to approximate the action-value function. The actor uses policy gradient to optimize the policy\u27s parameters to maximize the throughput

    Throughput maximization for an energy harvesting communication system with processing cost

    No full text
    In wireless networks, energy consumed for communication includes both the transmission and the processing energy. In this paper, point-to-point communication over a fading channel with an energy harvesting transmitter is studied considering jointly the energy costs of transmission and processing. Under the assumption of known energy arrival and fading profiles, optimal transmission policy for throughput maximization is investigated. Assuming that the transmitter has sufficient amount of data in its buffer at the beginning of the transmission period, the average throughput by a given deadline is maximized. Furthermore, a 'directional glue pouring algorithm' that computes the optimal transmission policy is described. \ua9 2012 IEEE
    corecore