6 research outputs found

    Threshold-coloring and unit-cube contact representation of graphs

    Full text link
    We study threshold coloring of graphs where the vertex colors, represented by integers, describe any spanning subgraph of the given graph as follows. Pairs of vertices with near colors imply the edge between them is present and pairs of vertices with far colors imply the edge is absent. Not all planar graphs are threshold-colorable, but several subclasses, such as trees, some planar grids, and planar graphs with no short cycles can always be threshold-colored. Using these results we obtain unit-cube contact representation of several subclasses of planar graphs. We show the NP-completeness for two variants of the threshold coloring problem and describe a polynomial-time algorithm for another. © 2013 Springer-Verlag

    Threshold-coloring and unit-cube contact representation of planar graphs

    Full text link
    In this paper we study threshold-coloring of graphs, where the vertex colors represented by integers are used to describe any spanning subgraph of the given graph as follows. A pair of vertices with a small difference in their colors implies that the edge between them is present, while a pair of vertices with a big color difference implies that the edge is absent. Not all planar graphs are threshold-colorable, but several subclasses, such as trees, some planar grids, and planar graphs with no short cycles can always be threshold-colored. Using these results we obtain unit-cube contact representation of several subclasses of planar graphs. Variants of the threshold-coloring problem are related to well-known graph coloring and other graph-theoretic problems. Using these relations we show the NP-completeness for two of these variants, and describe a polynomial-time algorithm for another. © 2015 Elsevier B.V

    Weak unit disk and interval representation of graphs

    Full text link
    We study a variant of intersection representations with unit balls: unit disks in the plane and unit intervals on the line. Given a planar graph and a bipartition of the edges of the graph into near and far edges, the goal is to represent the vertices of the graph by unit-size balls so that the balls for two adjacent vertices intersect if and only if the corresponding edge is near. We consider the problem in the plane and prove that it is NP-hard to decide whether such a representation exists for a given edgepartition. On the other hand, we show that series-parallel graphs (which include outerplanar graphs) admit such a representation with unit disks for any near/far bipartition of the edges. The unit-interval on the line variant is equivalent to threshold graph coloring, in which context it is known that there exist girth-3 planar graphs (even outerplanar graphs) that do not admit such coloring. We extend this result to girth-4 planar graphs. On the other hand, we show that all triangle-free outerplanar graphs and all planar graphs with maximum average degree less than 26/11 have such a coloring, via unit-interval intersection representation on the line. This gives a simple proof that all planar graphs with girth at least 13 have a unit-interval intersection representation on the line. © Springer International Publishing Switzerland 2016

    Threshold-Coloring and Unit-Cube Contact Representation of Graphs

    No full text
    In this paper we study threshold coloring of graphs, where the vertex colors represented by integers are used to describe any spanning subgraph of the given graph as follows. Pairs of vertices with near colors imply the edge between them is present and pairs of vertices with far colors imply the edge is absent. Not all planar graphs are threshold-colorable, but several subclasses, such as trees, some planar grids, and planar graphs without short cycles can always be threshold-colored. Using these results we obtain unit-cube contact representation of several subclasses of planar graphs. Variants of the threshold coloring problem are related to well-known graph coloring and other graph-theoretic problems. Using these relations we show the NP-completeness for two of these variants, and describe a polynomial-time algorithm for another
    corecore