1,303 research outputs found

    Analysis and application of improved feedthrough logic

    Get PDF
    Continuous technology scaling and increased frequency of operation of VLSI circuits leads to increase in power density which raises thermal management problem. Therefore design of low power VLSI circuit technique is a challenging task without sacrificing its performance. This thesis presents the design of a low power dynamic circuit using a new CMOS domino logic family called feedthrough (FTL) logic. Dynamic logic circuits are more significant because of its faster speed and lesser transistor requirement as compared to static CMOS logic circuits. The need for faster circuits compels designers to use FTL as compared static and domino CMOS logic and the requirement of output inverter for cascading of various logic blocks in domino logic are eliminated in the proposed design. The proposed circuit for low power (LP-FTL) improves dynamic power consumption as compared to the existing FTL and to further improve its speed we propose another circuit (HS-FTL). This logic family improves speed at the cost of dynamic power consumption and area. Proposed modified FTL circuit families provide better PDP as compared to the existing FTL. Simulation results of both the proposed circuit using 0.18 µm, 1.8 V CMOS process technology indicate that the LP-FTL structure reduces the dynamic power approximately by 42% and the HS-FTL structure achieves a speed up- 1.4 for 10-stage of inverters and 8-bit ripple carry adder in comparison to existing FTL logic. Furthermore, we present various circuit design techniques to improve noise tolerance of the proposed FTL logic families. Noise in deep submicron technology limits the reliability and performance of ICs. The ANTE (average noise threshold energy) metric is used for the analysis of noise tolerance of proposed FTL. A 2-input NAND and NOR gate is designed by the proposed technique. Simulation results for a 2-input NAND gate at 0.18-µm, 1.8 V CMOS process technology show that the proposed noise tolerant circuit achieves 1.79X ANTE improvement along with the reduction in leakage power. Continuous scaling of technology towards the nanometer range significantly increases leakage current level and the effect of noise. This research can be further extended for performance optimization in terms of power, speed, area and noise immunity

    Noise-based information processing: Noise-based logic and computing: what do we have so far?

    Full text link
    We briefly introduce noise-based logic. After describing the main motivations we outline classical, instantaneous (squeezed and non-squeezed), continuum, spike and random-telegraph-signal based schemes with applications such as circuits that emulate the brain functioning and string verification via a slow communication channel.Comment: Invited talk at the 21st International Conference on Noise and Fluctuations, Toronto, Canada, June 12-16, 201

    Design of Low Leakage Multi Threshold (Vth) CMOS Level Shifter

    Get PDF
    In this paper, a low leakage multi Vth level shifter is designed for robust voltage shifting from sub threshold to above threshold domain using MTCMOS technique and sleepy keeper. MTCMOS is an effective circuit level technique that improves the performance and design by utilizing both low and high threshold voltage transistors. Leakage power dissipation has become an overriding concern for VLSI circuit designers. In this a “sleepy keeper” approach is preferred which reduces the leakage current while saving exact logic state. The new  low-power level shifter using sleepy keeper is compared with the previous work for different values of the lower supply voltage. When the circuits are individually analyzed for power consumption at 45nm CMOS technology, the new level shifter offer significant power savings up to 37% as compared to the previous work. Alternatively, when the circuits are individually analyzed for minimum propagation delay, speed is enhanced by up to 48% with  our approach to the circuit. All the simulation results are based on 45nm CMOS technology and  simulated in cadence tool.DOI:http://dx.doi.org/10.11591/ijece.v3i5.316

    Near-Threshold Computing

    Get PDF
    Valmistustekniikoiden kehittyessä IC-piireille saadaan mahtumaan yhä enemmän transistoreja. Monimutkaisemmat piirit mahdollistavat suurempien laskutoimitusmäärien suorittamisen aikayksikössä. Piirien aktiivisuuden lisääntyessä myös niiden energiankulutus lisääntyy, ja tämä puolestaan lisää piirin lämmöntuotantoa. Liiallinen lämpö rajoittaa piirien toimintaa. Tämän takia tarvitaan tekniikoita, joilla piirien energiankulutusta saadaan pienennettyä. Uudeksi tutkimuskohteeksi ovat tulleet pienet laitteet, jotka seuraavat esimerkiksi ihmiskehon toimintaa, rakennuksia tai siltoja. Tällaisten laitteiden on oltava energiankulutukseltaan pieniä, jotta ne voivat toimia pitkiä aikoja ilman akkujen lataamista. Near-Threshold Computing on tekniikka, jolla pyritään pienentämään integroitujen piirien energiankulutusta. Periaatteena on käyttää piireillä pienempää käyttöjännitettä kuin piirivalmistaja on niille alunperin suunnitellut. Tämä hidastaa ja haittaa piirin toimintaa. Jos kuitenkin laitteen toiminnassa pystyään hyväksymään huonompi laskentateho ja pienentynyt toimintavarmuus, voidaan saavuttaa säästöä energiankulutuksessa. Tässä diplomityössä tarkastellaan Near-Threshold Computing -tekniikkaa eri näkökulmista: aluksi perustuen kirjallisuudesta löytyviin aikaisempiin tutkimuksiin, ja myöhemmin tutkimalla Near-Threshold Computing -tekniikan soveltamista kahden tapaustutkimuksen kautta. Tapaustutkimuksissa tarkastellaan FO4-invertteriä sekä 6T SRAM -solua piirisimulaatioiden avulla. Näiden komponenttien käyttäytymisen Near-Threshold Computing –jännitteillä voidaan tulkita antavan kattavan kuvan suuresta osasta tavanomaisen IC-piirin pinta-alaa ja energiankulusta. Tapaustutkimuksissa käytetään 130 nm teknologiaa, ja niissä mallinnetaan todellisia piirivalmistusprosessin tuotteita ajamalla useita Monte Carlo -simulaatioita. Tämä valmistuskustannuksiltaan huokea teknologia yhdistettynä Near-Threshold Computing -tekniikkaan mahdollistaa matalan energiankulutuksen piirien valmistaminen järkevään hintaan. Tämän diplomityön tulokset näyttävät, että Near-Threshold Computing pienentää piirien energiankulutusta merkittävästi. Toisaalta, piirien nopeus heikkenee, ja yleisesti käytetty 6T SRAM -muistisolu muuttuu epäluotettavaksi. Pidemmät polut logiikkapiireissä sekä transistorien kasvattaminen muistisoluissa osoitetaan tehokkaiksi vastatoimiksi Near- Threshold Computing -tekniikan huonoja puolia vastaan. Tulokset antavat perusteita matalan energiankulutuksen IC-piirien suunnittelussa sille, kannattaako käyttää normaalia käyttöjännitettä, vai laskea sitä, jolloin piirin hidastuminen ja epävarmempi käyttäytyminen pitää ottaa huomioon.Siirretty Doriast

    Single Event Effect Hardening Designs in 65nm CMOS Bulk Technology

    Get PDF
    Radiation from terrestrial and space environments is a great danger to integrated circuits (ICs). A single particle from a radiation environment strikes semiconductor materials resulting in voltage and current perturbation, where errors are induced. This phenomenon is termed a Single Event Effect (SEE). With the shrinking of transistor size, charge sharing between adjacent devices leads to less effectiveness of current radiation hardening methods. Improving fault-tolerance of storage cells and logic gates in advanced technologies becomes urgent and important. A new Single Event Upset (SEU) tolerant latch is proposed based on a previous hardened Quatro design. Soft error analysis tools are used and results show that the critical charge of the proposed design is approximately 2 times higher than that of the reference design with negligible penalty in area, delay, and power consumption. A test chip containing the proposed flip-flop chains was designed and exposed to alpha particles as well as heavy ions. Radiation experimental results indicate that the soft error rates of the proposed design are greatly reduced when Linear Energy Transfer (LET) is lower than 4, which makes it a suitable candidate for ground-level high reliability applications. To improve radiation tolerance of combinational circuits, two combinational logic gates are proposed. One is a layout-based hardening Cascode Voltage Switch Logic (CVSL) and the other is a fault-tolerant differential dynamic logic. Results from a SEE simulation tool indicate that the proposed CVSL has a higher critical charge, less cross section, and shorter Single Event Transient (SET) pulses when compared with reference designs. Simulation results also reveal that the proposed differential dynamic logic significantly reduces the SEU rate compared to traditional dynamic logic, and has a higher critical charge and shorter SET pulses than reference hardened design

    IDPAL - Input Decoupled Partially Adiabatic Logic Family: Theory and Implementation of Side-Channel Attack Resistant Circuits

    Get PDF
    The Input Decoupled Partially Adiabatic Logic (IDPAL) family was developed by Cutitaru to consume less power than other logic families as well as producing a resistance to side-channel attacks. With modifications made to IDPAL, the side-channel attack resistance is being revisited and quantified. The three logic families are compared in the work are CMOS, 2N2P, and IDPAL. An AND/NAND gate was created using each logic family and compared with two tests: 1) a simulated side-channel attack and 2) an energy analysis. In this work, a side-channel attack is the ability to predict the inputs of a logic circuit based on the electrical current waveform. For the Test 1, a higher prediction error suggests a higher resistance to attack. IDPAL produced the highest error in this test at 50.000%, which is 40.625% higher than in CMOS and 28.125% higher than in 2N2P. In Test 2, two primary statistics that were observed the variance in current trace (NSD and NED). Lower values of these measures implies a higher chance of a model resisting a side-channel attack. For the individual logic gates, the IDPAL model showed a lower variance in one of the two measures. For the Kogge-Stone adder, a more complex circuit, the IDPAL model was superior in both tests. With the results of the small and larger scale experiments in agreement, the final conclusion is that IDPAL does, indeed, resist side-channel attacks in a stronger fashion than other logic families

    Asynchronous Nano-Electronics: Preliminary Investigation

    Get PDF
    This paper is a preliminary investigation in implementing asynchronous QDI logic in molecular nano-electronics, taking into account the restricted geometry, the lack of control on transistor strengths, the high timing variations. We show that the main building blocks of QDI logic can be successfully implemented; we illustrate the approach with the layout of an adder stage. The proposed techniques to improve the reliability of QDI apply to nano-CMOS as well
    corecore