70 research outputs found

    Efficiently Decodable Non-Adaptive Threshold Group Testing

    Full text link
    We consider non-adaptive threshold group testing for identification of up to dd defective items in a set of nn items, where a test is positive if it contains at least 2ud2 \leq u \leq d defective items, and negative otherwise. The defective items can be identified using t=O((du)u(ddu)du(ulogdu+log1ϵ)d2logn)t = O \left( \left( \frac{d}{u} \right)^u \left( \frac{d}{d - u} \right)^{d-u} \left(u \log{\frac{d}{u}} + \log{\frac{1}{\epsilon}} \right) \cdot d^2 \log{n} \right) tests with probability at least 1ϵ1 - \epsilon for any ϵ>0\epsilon > 0 or t=O((du)u(ddu)dud3lognlognd)t = O \left( \left( \frac{d}{u} \right)^u \left( \frac{d}{d -u} \right)^{d - u} d^3 \log{n} \cdot \log{\frac{n}{d}} \right) tests with probability 1. The decoding time is t×poly(d2logn)t \times \mathrm{poly}(d^2 \log{n}). This result significantly improves the best known results for decoding non-adaptive threshold group testing: O(nlogn+nlog1ϵ)O(n\log{n} + n \log{\frac{1}{\epsilon}}) for probabilistic decoding, where ϵ>0\epsilon > 0, and O(nulogn)O(n^u \log{n}) for deterministic decoding

    Efficient Probabilistic Group Testing Based on Traitor Tracing

    Get PDF
    Inspired by recent results from collusion-resistant traitor tracing, we provide a framework for constructing efficient probabilistic group testing schemes. In the traditional group testing model, our scheme asymptotically requires T ~ 2 K ln N tests to find (with high probability) the correct set of K defectives out of N items. The framework is also applied to several noisy group testing and threshold group testing models, often leading to improvements over previously known results, but we emphasize that this framework can be applied to other variants of the classical model as well, both in adaptive and in non-adaptive settings.Comment: 8 pages, 3 figures, 1 tabl

    Derandomization and Group Testing

    Full text link
    The rapid development of derandomization theory, which is a fundamental area in theoretical computer science, has recently led to many surprising applications outside its initial intention. We will review some recent such developments related to combinatorial group testing. In its most basic setting, the aim of group testing is to identify a set of "positive" individuals in a population of items by taking groups of items and asking whether there is a positive in each group. In particular, we will discuss explicit constructions of optimal or nearly-optimal group testing schemes using "randomness-conducting" functions. Among such developments are constructions of error-correcting group testing schemes using randomness extractors and condensers, as well as threshold group testing schemes from lossless condensers.Comment: Invited Paper in Proceedings of 48th Annual Allerton Conference on Communication, Control, and Computing, 201

    Asymptotics of Fingerprinting and Group Testing: Tight Bounds from Channel Capacities

    Get PDF
    In this work we consider the large-coalition asymptotics of various fingerprinting and group testing games, and derive explicit expressions for the capacities for each of these models. We do this both for simple decoders (fast but suboptimal) and for joint decoders (slow but optimal). For fingerprinting, we show that if the pirate strategy is known, the capacity often decreases linearly with the number of colluders, instead of quadratically as in the uninformed fingerprinting game. For many attacks the joint capacity is further shown to be strictly higher than the simple capacity. For group testing, we improve upon known results about the joint capacities, and derive new explicit asymptotics for the simple capacities. These show that existing simple group testing algorithms are suboptimal, and that simple decoders cannot asymptotically be as efficient as joint decoders. For the traditional group testing model, we show that the gap between the simple and joint capacities is a factor 1.44 for large numbers of defectives.Comment: 14 pages, 6 figure

    A framework for generalized group testing with inhibitors and its potential application in neuroscience

    Get PDF
    The main goal of group testing with inhibitors (GTI) is to efficiently identify a small number of defective items and inhibitor items in a large set of items. A test on a subset of items is positive if the subset satisfies some specific properties. Inhibitor items cancel the effects of defective items, which often make the outcome of a test containing defective items negative. Different GTI models can be formulated by considering how specific properties have different cancellation effects. This work introduces generalized GTI (GGTI) in which a new type of items is added, i.e., hybrid items. A hybrid item plays the roles of both defectives items and inhibitor items. Since the number of instances of GGTI is large (more than 7 million), we introduce a framework for classifying all types of items non-adaptively, i.e., all tests are designed in advance. We then explain how GGTI can be used to classify neurons in neuroscience. Finally, we show how to realize our proposed scheme in practice
    corecore