1,414,937 research outputs found
Visualising interactions in bi- and triadditive models for three-way tables
This paper concerns the visualisation of interaction in three-way arrays. It extends some standard ways of visualising biadditive modelling for two-way data to the case of three-way data. Three-way interaction is modelled by the Parafac method as applied to interaction arrays that have main effects and biadditive terms removed. These interactions are visualised in three and two dimensions. We introduce some ideas to reduce visual overload that can occur when the data array has many entries. Details are given on the interpretation of a novel way of representing rank-three interactions accurately in two dimensions. The discussion has implications regarding interpreting the concept of interaction in three-way arrays
Digital system for dynamic turbine engine blade displacement measurements
An instrumentation concept for measuring blade tip displacements which employs optical probes and an array of micro-computers is presented. The system represents a hitherto unknown instrumentation capability for the acquisition and direct digitization of deflection data concurrently from all of the blade tips of an operational engine rotor undergoing flutter or forced vibration. System measurements are made using optical transducers which are fixed to the case. Measurements made in this way are the equivalent of those obtained by placing three surface-normal displacement transducers at three positions on each blade of an operational rotor
Improving the Lives of LGBT Older Adults
Although largely invisible until recently, LGBT older adults make up a significant (and growing) part of both the overall LGBT population and the larger 65+ population. While confronted with the same challenges that face all people as they age, LGBT elders also face an array of unique barriers and inequalities that can stand in the way of a healthy and rewarding later life. This report examines these additional challenges and how they make it harder for LGBT elders to achieve three key elements of successful aging: financial security, good health and health care, and social support and community engagement. The report also offers detailed recommendations for improving the lives, and life chances, of LGBT older Americans
Critical vortex line length near a zigzag of pinning centers
A vortex line passes through as many pinning centers as possible on its way
from one extremety of the superconductor to the other at the expense of
increasing its self-energy. In the framework of the Ginzburg-Landau theory we
study the relative growth in length, with respect to the straight line, of a
vortex near a zigzag of defects. The defects are insulating pinning spheres
that form a three-dimensional cubic array embedded in the superconductor. We
determine the depinning transition beyond which the vortex line no longer
follows the critical zigzag path of defects.Comment: 8 pages, 25 figures with low resolution option, 1 table. To be
published in Eur. Phys. Jour.
Magnetic reversal modes in multisegmented nanowire arrays with long aspect ratio
A detailed numerical analysis of the magnetization reversal processes in
multisegmented nanowire arrays was developed. The nanowires have a long aspect
ratio and are formed by magnetic and non-magnetic sections alternately arranged
in such a way that the array resembles magnetic layers separated by
non-magnetic layers. Attention has been focused on the influence of
magnetostatic interaction in the magnetic pattern formation of these magnetic
nanostructures. Results from a magnetic correlation function among layers show
that three different reversal modes can be detected depending on the number and
distance between the magnetic segments. As a consequence of the different
reversal modes, a non-monotonic behavior of the annihilation field in function
of the distance between the layers is evidenced. Thus, these results are
important for the production of magnetic devices with multisegmented nanowire
arrays
Comparative Analysis of Molecular Clouds in M31, M33 and the Milky Way
We present BIMA observations of a 2\arcmin field in the northeastern spiral
arm of M31. In this region we find six giant molecular clouds that have a mean
diameter of 5713 pc, a mean velocity width of 6.51.2 \kms, and a mean
molecular mass of 3.0 1.6 10\Msun. The peak brightness
temperature of these clouds ranges from 1.6--4.2 K. We compare these clouds to
clouds in M33 observed by \citet{wilson90} using the OVRO millimeter array, and
some cloud complexes in the Milky Way observed by \cite{dame01} using the CfA
1.2m telescope. In order to properly compare the single dish data to the
spatially filtered interferometric data, we project several well-known Milky
Way complexes to the distance of Andromeda and simulate their observation with
the BIMA interferometer. We compare the simulated Milky Way clouds with the M31
and M33 data using the same cloud identification and analysis technique and
find no significant differences in the cloud properties in all three galaxies.
Thus we conclude that previous claims of differences in the molecular cloud
properties between these galaxies may have been due to differences in the
choice of cloud identification techniques. With the upcoming CARMA array,
individual molecular clouds may be studied in a variety of nearby galaxies.
With ALMA, comprehensive GMC studies will be feasible at least as far as the
Virgo cluster. With these data, comparative studies of molecular clouds across
galactic disks of all types and between different galaxy disks will be
possible. Our results emphasize that interferometric observations combined with
the use of a consistent cloud identification and analysis technique will be
essential for such forthcoming studies that will compare GMCs in the Local
Group galaxies to galaxies in the Virgo cluster.Comment: Accepted for Publication in the Astrophysical Journa
A GPU based real-time software correlation system for the Murchison Widefield Array prototype
Modern graphics processing units (GPUs) are inexpensive commodity hardware
that offer Tflop/s theoretical computing capacity. GPUs are well suited to many
compute-intensive tasks including digital signal processing.
We describe the implementation and performance of a GPU-based digital
correlator for radio astronomy. The correlator is implemented using the NVIDIA
CUDA development environment. We evaluate three design options on two
generations of NVIDIA hardware. The different designs utilize the internal
registers, shared memory and multiprocessors in different ways. We find that
optimal performance is achieved with the design that minimizes global memory
reads on recent generations of hardware.
The GPU-based correlator outperforms a single-threaded CPU equivalent by a
factor of 60 for a 32 antenna array, and runs on commodity PC hardware. The
extra compute capability provided by the GPU maximises the correlation
capability of a PC while retaining the fast development time associated with
using standard hardware, networking and programming languages. In this way, a
GPU-based correlation system represents a middle ground in design space between
high performance, custom built hardware and pure CPU-based software
correlation.
The correlator was deployed at the Murchison Widefield Array 32 antenna
prototype system where it ran in real-time for extended periods. We briefly
describe the data capture, streaming and correlation system for the prototype
array.Comment: 11 pages, to appear in PAS
- …
