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for three-way tables
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Abstract

This paper concerns the visualisation of interaction in three-way arrays. It

extends some standard ways of visualising biadditive modelling for two-way data

to the case of three-way data. Three-way interaction is modelled by the Parafac

method as applied to interaction arrays that have main effects and biadditive terms

removed. These interactions are visualised in three and two dimensions. We in-

troduce some ideas to reduce visual overload that can occur when the data array

has many entries. Details are given on the interpretation of a novel way of repre-

senting rank-three interactions accurately in two dimensions. The discussion has

implications regarding interpreting the concept of interaction in three-way arrays.

Keywords. Interpretation of interaction, Modelling of interaction, Visualisa-

tion of interaction, Biadditive Models, Individual Scaling.
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1 Setting the scene1

“. . .It is important that the final model or models should make sense2

physically: at a minimum, this usually means that interactions should not be3

included without main effects nor higher-degree polynomial terms without4

their lower-degree relatives. Furthermore, if the model is to be used as a5

summary of the findings of one out of several studies bearing on the same6

phenomenon, main effects would usually be included whether significant or7

not. Strict adherence to this policy makes it easier to compare the results8

of various studies and helps to avoid the apparent conflicts that occur when9

different fitted models with different sets of terms are used in each study.”10

McCullagh and Nelder (1989, p.89)11

In this paper, we are concerned with three-way tables X with elements xijk (i = 1, . . . , I;12

j = 1, . . . , J ; k = 1, . . . ,K). Thus, the factors used to classify the three ways have equal13

status (sometimes called modes) while the body of the table contains values of a quan-14

titative variable that may be regarded as a dependent variable - as classically typified15

by a three-way table arising from agricultural experiments with fertilizer treatments as16

factors and crop yield as the response. The factors are treated as categorical variables17

but if they happen to have numerical values, this may be taken into account when inter-18

preting interactions. The primary emphasis is on the visualisation of interaction with a19

supplementary interest in estimation and interpretation seen in the light of the quota-20

tion from McCullagh and Nelder (1989). To dispel any suggestion to the contrary, we21

emphasize that the quotation is not an expression of a mathematical fact but more an22

observation on how data can usually be expected to behave. In the psychometric liter-23

ature, a three-way table is sometimes referred to as one-mode three-way data (Carroll24

and Arabie, 1980; Coombs, 1964; Kiers, 2000) or, shorter, as (data) array, whereas in25

chemometrics the terminology tensor for X is more common.26

Three-way tables are usually analysed by linear models containing additive terms27

representing main effects, two-factor interactions, and three-factor interactions. The28

number of factors can be readily extended to any number of “ways”. The form of29

such models readily respects the McCullagh and Nelder (1989) quotation. Note that30

with a dependent interval variable there is a fundamental need for at least one additive31

parameter to represent translation (e.g. Celsius to Fahrenheit).32

For reference, and to establish notation, we list the basic results for additive models.33

The model is34

xijk = m+ {ai + bj + ck}+ {djk + eik + fij}+ gijk (1)
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where the terms with a single suffix represent main effects, those with double suffices two35

factor interactions and gijk represents contributions from three factor interactions. Some36

components of the interactions may be regarded as “error”. The estimating equations37

are subsumed in the identity:38

x̂ijk = x··· + {(xi·· − x···) + (x·j· − x···) + (x··k − x···)} (2)

+{(x·jk − x·j· − x··k + x···) + (xi·k − xi·· − x··k + x···)

+(xij· − xi·· − x·j· + x···)}

+(xijk − x·jk + xi·k + xij· + xi·· + x·j· + x··k − x···)

where the expressions in braces in (2) estimate the corresponding parameters in (1).39

Note that we adopt the convention that a “hat” on the left-hand-side implies that the40

terms on the right-hand-side are parameter estimates, else they are the parameters41

themselves. The terms in (2) contribute to an orthogonal analysis of variance:42

I,J,K∑
i,j,k

(x̂ijk − x···)2 = JK||a||2 + IK||b||2 + IJ ||c||2 + I||D||2 + J ||E||2 +K||F||2 + ||G||2

(3)

where a,b, c are vectors of the main effects, D,E,F are matrices of the two-factor43

interactions and ||G||2 represents the sum-of-squares of the elements of the three-factor44

interaction.45

When interactions have been estimated, there remains the problem of their inter-46

pretation. The terms in (2) represent overall contributions to each main effect and47

interaction. To help interpret overall representations of interaction, several simple ap-48

proximations have been proposed. One possibility is to focus on the larger (positive or49

negative) terms. Another is to fit linear and quadratic polynomials to get, for exam-50

ple, linear × linear × quadratric estimates. Even the simpler of these can be difficult51

to interpret and, strictly speaking, such expressions are valid only when the classifying52

factors are numerical (like levels of fertilizer applications).53

Another possibility is to fit product terms like aibj . Products of two factors have54

bilinear regression interpretations and a nice geometrical representation that underpins55

useful visualisations of two-factor interaction. This possibility of biadditive modelling is56

discussed in Section 2. A biadditive model gives the best rank-r least-squares approxi-57

mation to a two-way table/matrix but this optimal mathematical property should not58

necessarily be taken as an expression of an appeal to underlying substantive multiplica-59

tive effects.60

3



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

In a parallel literature, models for analysing three-way data (summarised in Kroonen-61

berg, 2008; Smilde et al., 2004) often include triple product terms like aibjck. Included62

are three-mode principal component analysis (Tucker, 1966) and methods as the Can-63

decomp (Carroll and Chang, 1970) and Parafac models (Harshman, 1970) (both models64

are equivalent and commonly denoted as the CP-model). A desirable computational65

requirement for fitting three-way multiplicative models is a universal algorithm for fit-66

ting a general canonical decomposition for three-way arrays. Such models are discussed67

in Section 3. It is clear that triple product terms may be potentially useful in many68

contexts and considered as a natural extension for representing triadditive interactions69

in a similar way that biadditive models may represent two-factor interactions.70

In many psychometric and chemometric methods, the triple product term domi-71

nates the model, even to the extent of excluding lower order terms, thus not respecting72

the maxim of McCullagh and Nelder (1989) cited at the start of this paper. This is73

because in psychometrics the methods are intended as generalisations of Principal Com-74

ponent Analysis and related methods that do not admit a dependent variable; such75

methods are beyond the scope of this paper. Nevertheless, triadditive terms may be76

used to approximate three-way interactions. In the following we exploit the fact that77

the Candecomp-Parafac algorithm can be useful for fitting three-way multiplicative in-78

teractions in three-way models. We explore the consequences for the McCullagh and79

Nelder dictum if this route is taken. Visualisation is important in the interpretation80

of biadditive interactions and we provide suggestions for its improvement: Appendix A81

discusses how to calibrate axes Appendix B provides details on optimising a parallel axis82

display of the interactions and Section 4 demonstrates these methods. Furthermore, we83

show how triadditive terms may be visualised and interpreted.84

In the above, we have regarded the overall main effects and interaction terms in (2)85

as the definitive expressions of interaction. These may then be approximated as we have86

described, by linear, biadditive or triadditive estimates, perhaps including other parts87

of the interactions in an error term. For linear and biadditive estimates the procedure88

of estimating the biadditive part of each interaction, conditionally on the usual least-89

squares estimates of the linear part, usually turns out to be equivalent to unconditional90

estimation. However, this is not true for some of the biadditive models we discuss below91

and for triadditive models it is never true.92

Sections 2 and 3 briefly summarise some of the current insights in biadditive and93

triadditive models and discuss various ways of modelling and interpreting interactions94

using these models. These sections are not meant provide an exhaustive and complete95

overview of all knowledge on biadditive and triadditive models, as good sources for that96

already exist (Smilde et al., 2004; Kroonenberg, 2008). Subsequently, biadditive and97
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triadditive visualisations are constructed for an example from agricultural (Section 4)98

research. Although these visualisations are based on the Candecomp-model Carroll and99

Chang (1970), the visualisations can also be based on other techniques for analysing100

three-way arrays. Section 5 concludes the paper.101

2 Biadditive models102

In this section we summarise well-known results for biadditive models. This establishes103

notation that is needed for similar developments with triadditive models discussed in104

Section 3.105

2.1 Biadditive models for two-way tables106

For an I × J table X with elements xij the general biadditive model is:107

xij = m+ ai + bj +

R∑
r=1

cir c̃jr + εij (i = 1, . . . , I, j = 1, . . . , J) (4)

where ai and bj represent row and column main effects, and cir and c̃jr (r = 1, . . . , R)108

model the multiplicative interaction. The error terms εij are assumed to be indepen-109

dently distributed with equal variances. Many classical models, such as Tukey’s model110

for one degree of freedom for non-additivity (Tukey, 1949), can be considered as spe-111

cial cases of a biadditive model. Alternative names under which (4) has appeared, are112

FANOVA (FActor ANalysis Of VAriance) (Gollob, 1968) and AMMI (Additive Main113

effects and Multiplicative Interactions) (Gauch, 1992). Also the GEMANOVA (Gener-114

alised multiplicative ANOVA) model (cf. Bro and Jakobsen, 2002) is related. We prefer115

the neutral biadditive model terminology which is in line with general statistical usage116

(Denis and Gower, 1994). These authors were interested in biadditivity because they117

thought that substantive genetic effects were better modelled in multiplicative rather118

than additive terms.119

In general, model (4) is not fully identified. The simplest identification constraints120

for the general model are121

1′a = 1′b = 1′cr = 1c̃r = 0

c̃′rc̃r = c′rcr = σr, say, and c̃′rc̃s = c′rcs = 0 (r 6= s)

}
(r, s = 1, . . . , R) (5)

ensuring that the matrix
∑R
r=1 cir c̃jr of interaction parameters of rank R is uniquely122

parameterised in the form of its singular value decomposition with singular values123
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σ1, . . . , σR.124

The analysis of variance corresponding to a two-way version of (4) is:125

I,J∑
i,j

(x̂ij − x··)2 = J ||a||2 + I||b||2 +

R∑
r=1

σ2
r +

ρ∑
r=R+1

σ2
r (6)

where ρ = rank(X).126

2.2 Biadditive models for three-way tables127

Biadditive terms may be used to model interaction in three-way tables (cf. Gower, 1977).128

For an I × J ×K table X with elements xijk we may consider the following biadditive129

model:130

xijk = m+ ai + bj + ck +

P∑
p=1

djpd̃kp +

Q∑
q=1

eiq ẽkq +

R∑
r=1

firf̃jr + εijk (7)

for i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . ,K, where the εijk are the elements of the131

three-way error array E.132

Similar identification constraints to those already discussed for model (4) may be133

applied for the biadditive model (7) for three-way tables:134

1′a = 1′b = 1′c = 1′dp = 1′d̃p = 1′eq = 1′ẽq = 1′fr = 1′f̃r = 0

for p = 1, . . . , P ; q = 1, . . . , Q; r = 1, . . . , R, together with the SVDs of the three135

biadditive interaction matrices as they occur in (2). The resulting analysis of variance136

is:137

I,J,K∑
i,j,k=1

(x̂ijk − x···)2 = JK||a||2+IK||b||2+IJ ||c||2+I

P∑
s=1

σ2
ps+J

Q∑
s=1

σ2
qs+K

R∑
s=1

σ2
rs+σ2

(8)

where the singular values σps (s = 1, . . . , P ), σqs (s = 1, . . . , Q) and σrs (s = 1, . . . , R)138

refer to the respective residual tables Zi, Zj and Zk defined as in (2), and σ2 is the139

residual sum-of-squares obtained from all the singular values not included in the sum-140

mations. The solution for the multiplicative constants is then obtained from the SVD141

of the two-way tables of residuals Zi, Zj and Zk. This is a simple generalisation that142

may be readily extended to tables of any number of “ways”.143

The choice of ranks P , Q and R can be made by ad hoc arguments, such as that144

rank 2 approximations can be visualised and communicated in an understandable way.145

6



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Another option lies in more formal arguments such as obtaining corresponding degrees146

of freedom, for instance for the A× B interaction, through the rule of thumb that (i)147

degrees of freedom for P = 1, 2, . . . ,min(I − 1, J − 1) should add up to that of the A×B148

interaction in the two-way ANOVA table, (ii) the df for dimension i should be two less149

than that for dimension i− 1. According to (Gower et al., 2011, Section 6.3), this rule150

was first given by Rao (1952). A formal test of significance for P , Q or R = 1 has been151

given by Corsten and Eijnsbergen (1972). Other approaches include cross-validation152

and using multiway extentions of the Kaiser criterion or scree plot (Kroonenberg and153

van der Voort, 1987), such as the DifFit procedure for Tucker3 models (Timmerman154

and Kiers, 2000). See Smilde et al. (2004, Section 7.4) and Kroonenberg (2008, Section155

8.5) for an overview of component-selection methods.156

2.3 Visualisation for biadditive models157

It is useful, especially when R = 2, to plot the rows of cr (r = 1, . . . , R) to give I158

row-points and the rows of c̃r (r = 1, . . . , R) to give J column-points. In this biplot, the159

inner-product determined by a pair of points, one from each set, gives a visualisation of160

the corresponding interaction. This is a well-known form of biplot (see e.g. Gower et al.,161

2011). Another possibility is to present the rows as axes and the columns as points162

(or vice versa). The axes may be calibrated, making it trivial to find values of inner163

products.164

Furthermore, axes may include markers for the row or column main effects. As165

we show in Appendix A, calibrated axes may be provided simultaneously for rows and166

columns and both sets of main effects may be included. In addition, the values of167

α + β = 1 (as defined in Appendix A) are at choice and λ-scaling is available (see168

Gower et al., 2011). In this way, a variety of equivalent representations, which may be169

regarded as items drawn from a toolbox, is available for presentational purposes. One170

may choose among the possibilities to represent only the more important interactions.171

Some examples are included in Section 4 of this paper.172

The biplot representation of two-factor interactions is an attractive aid to interpre-173

tation. Also the biadditive model of three-way data can be visualised, now by three174

biplots, one for each biadditive term in (7).175

7
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3 Triadditive models176

3.1 Triadditive models for three-way data177

For an I × J ×K table X with elements xijk, consider the following triadditive model:178

xijk = m+ ai + bj + ck +

P∑
p=1

djpd̃kp +

Q∑
q=1

eiq ẽkq +

R∑
r=1

firf̃jr +

S∑
s=1

gisg̃js ˜̃gks + εijk (9)

This model is an extension of (7) where the error array E is partitioned into a rank-S179

triadditive part G and a new error array E with, generally, a smaller sum of squared180

elements than that of (7). For identification, the usual zero-sum identification constraints181

may be applied to all the parameters but when applied to the triadditive parameters182

gis, g̃js, ˜̃gks it has unexpected implications. This is because adding constants α, β, γ183

replaces the triadditive term by (gis +α)(g̃js +β)(˜̃gks +γ) which, on expansion, induces184

additional additive and biadditive terms. The additive terms may be absorbed into185

zero-sum main effects without affecting the form of the model. This is not so for the186

biadditive terms, where unabsorbable parts of the triadditive interaction contribute to187

the biadditive parameters, thus increasing their rank. Thus, this reparameterisation188

changes the form of the model. One consequence is that the least-squares estimates189

of the triadditive interaction parameters are not the same as the estimates conditional190

on the estimated main effects and biadditive interactions. Another, is that the usual191

orthogonal analysis of variance is not available. This position may be accepted and192

algorithms developed to fit the model but a more simple option is to fit the triadditive193

part conditional on the main effects and the saturated biadditive component of the194

model. That is, we fit the triadditive part of the model to the biadditive residual table:195

ẑijk = xijk − x·jk − xi·k − xij· + xi·· + x·j· + x··k − x···. (10)

Triadditive interactions in (9) may be modelled in two ways. If zijk represents a196

typical term of the interaction we may fix one factor, say i, and consider the I two-197

way tables {z1jk}, {z2jk}, . . . , {zIjk}. Each of these tables may be fitted by a biadditive198

model and the results compared. This approach is consistent with the classical notion199

of interaction as a difference in response to a factor, or set of factors (here j and k), at200

different levels of another factor (here i). Of course, we may interchange the roles of i, j201

and k. The other approach is to fit a truly triadic model with the Candecomp-Parafac202

8
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algorithm (Carroll and Chang, 1970; Harshman, 1970), minimising:203

I,J,K∑
i,j,k=1

R∑
r=1

(zijk − uirvjrwkr)2 . (11)

We choose for this approach as it is a truly triadic approach. The approximation (11)204

may be viewed as the triadditive counterpart of the Eckart-Young theorem but lacking205

a nice known canonical decomposition. (See also Schmidt (1907), which is said to be206

the first example of the SVD least-squares property, albeit in a very different field from207

data analysis.) This approach is close to the classical approximation of interactions208

by orthogonal polynomials in linear models. Here we fit a biadditive approximation to209

the two-way interactions and a triadditive approximation to the three-way interaction210

terms of (1) and (2). The residuals from the triadic term contribute to the term (11),211

while the biadditive part contributes components what we denote by σ2 in (8). In a212

good fit, these two components should be comparable giving some indication of stability213

and, when available, they may be compared with independent estimates of replication-214

error. From the statistical point of view we need some concept akin to that of degrees215

of freedom in linear models. What is known about this is summarised by Kroonenberg216

(2008, Section 8.4). Related to this is the concept of rank for three-way arrays (cf. ten217

Berge (2011) and Smilde et al. (2004, Section 2.6)). Triadditive rank is defined as the218

smallest value of R that gives an exact triadditive fit. The interaction array Z, with its219

zero marginals, generally has lower rank than the data array X (Albers et al., 2017).220

Since our focus lies on the visualisation of interactions, here we will not formally study221

rank properties of Z.222

3.2 Visualisation for three-way data223

As with the biaddittive model, when a rank R triadic model (11) has been fitted, there224

is interest in expressing the interaction in graphical form. In the rank one case (R = 1),225

the points for ui1 (i = 1, . . . , I); vj1 (j = 1, . . . , J); wk1 (k = 1, . . . ,K) may be placed on226

separate orthogonal coordinate axes, which we shall label u, v and w. Then, ui1vj1wk1227

is simply proportional to the volume of the tetrahedron with these three points on228

orthogonal axes and the origin as vertices (Figure 1, left).229

When R = 2, the visualisation remains basically Euclidean in three dimensions and it230

may be interpreted in terms of tetrahedronal volume where the vertices of the tetrahedra231

are confined to the origin and three orthogonal planes (Figure 1, right). The justification232

9
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of this approach follows from the trilinear identity:233

det

 0 ui1 ui2

vj2 0 vj1

wk1 wk2 0

 = ui1vj1wk1 + ui2vj2wk2 (12)

(see also equation (4) in Albers and Gower (2014)). The rows of the determinant on234

the left hand side may be interpreted as giving the coordinates of three points, one in235

each of three orthogonal dimensions, while the right hand side gives a term in the rank236

two triadditive model. Albers and Gower (2014) give further details and show that,237

without loss of information, this representation may be shown in two dimensions to give238

a visualisation which resembles a biplot, with one set of K coplanar points and two sets of239

calibrated axes representing the remaining IJ factors. Thus, it is a ‘triplot’ rather than a240

biplot (see e.g. Gower et al., 2011). Whilst Albers and Gower (2014) explain the technical241

construction of these triplots, instruction on how to interpret these triplots, especially242

in the case of interaction arrays, is lacking. We provide such explanation Section 4.243

That rank-two trilinear interactions may be shown in two dimensions, gives them similar244

status to interactions for bilinear models and makes direct three-dimensional tetrahedral245

visualisations unnecessary. We believe that this is a major step forward.246

* FIGURE 1 ABOUT HERE *247

Because volume is invariant to orthogonal transformations, one may deduce from the248

above three-dimensional representation that the parameters of rank 2 triadditive models249

are determined only up to arbitrary orthogonal rotations in three dimensions. This de-250

gree of arbitrariness is similar to that found in biadditive models where inner-products or,251

equivalently, areas (Gower et al., 2010) rather than volume are the invariants. Orthog-252

onal transformation is not the only invariant for rank 2 triadditive models; for example,253

provided αβγ = 1, we could also scale the three axes by α, β, γ, respectively, without254

affecting volume. Our experience is that visualisation that yields easiest interpretation255

is achieved when α, β and γ are chosen such that
∑
i,r u

2
i,r ≈

∑
j,r v

2
j,r ≈

∑
k,r w

2
k,r.256

With this degree of arbitrariness, we see little point in paying much attention to the257

estimated values of the parameters u, v, w but rather to focus on the invariants, such258

as volume and the actual fitted values x̂ijk and ẑijk.259

Higher rank solutions to biadditive models can be shown as three-dimensional images260

or by exhibiting several planar cross-sections of the higher-dimensional space. Neither261

of these is satisfactory and it is the two-dimensional approximations that are by far the262

most important. Nevertheless, it is interesting to see what progress can be made with263

10
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representing triadditive terms for R = 3. We could show this as three volumes, each of264

unit rank (ui1vj1wk1) + (ui2vj2wk2) + (ui3vj3wk3), or of two volumes, one of unit rank265

and the other of rank two (ui1vj1wk1) + (ui2vj2wk2 + ui3vj3wk3). A more symmetric266

representation arises from noting that267

2(ui1vj1wk1 + ui2vj2wk2 + ui3vj3wk3) (13)

= det

 0 ui1 ui2

vj2 0 vj1

wk1 wk2 0

+ det

 0 ui1 ui3

vj3 0 vj1

wk1 wk3 0

+ det

 0 ui2 ui3

vj3 0 vj2

wk2 wk3 0

 .

After equation (12), we explained how this determinant is equal to the volume of a single268

tetrahedron. Using analogous arguments, equation (13) equals three times the sum of269

the volumes of the tetrahedra designated by the three separate determinants. We have270

seen that when R = 1, the three axes share a common origin and when R = 2 the271

three planes share an orthogonal set of axes. When R = 3 we retain the orthogonal272

axes u, v, w but, as is shown by (13), it is the projections of the points (ui1ui2u13),273

(vj1vj2vj3), (wk1, wk2, wk3) onto the (vw), (wu), (uv) planes that determine the vertices274

of the operative tetrahedra. The display of Figure 2 shows that this visualisation is on275

the boundary of what is relevant for practical purposes.276

Interestingly, when R = 4 we may write (ui1vj1wk1 + ui2vj2wk2) + (ui3vj3wk3 +277

ui4vj4wk4) the sum of two rank 2 terms each representable by a single tetrahedron.278

However, adding even two volumes is not acceptable. We conclude that rank two rep-279

resentations of triadditive models are at the limits of useful graphical representation;280

higher ranks are possible but are impracticable.281

* FIGURE 2 ABOUT HERE *282

4 Application: response of wheat varieties to the ap-283

plication of nitrogen fertiliser at different sites284

Blackman et al. (1978) studied the effect of the application of nitrogen fertiliser to several285

varieties of winter wheat of contrasting height grown at different trial sites. The data286

consists of a fully crossed design with the following three factors:287

A Rate of nitrogen application (I = 2 levels, low and high)288

B Trial sites (J = 7 locations in the United Kingdom)289

C Variety (K = 12 different varieties).290

11



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

The names of the factor levels for factors B and C are given in Table 1. A fourth291

factor, indicating whether the variety is either ‘conventional’ (varieties Cappelle, Ranger,292

Huntsman, Templar, and Kinsman) or ‘semi-dwarf’ (varieties Fundin, Durin, Hobbit,293

Sportsman, TJB295/95, TJB325/464, and Hustler), is excluded from our analysis as it’s294

obviously not a crossed factor. The dependent variable is grain yield, measured in grams295

per square meter. One trial site (Edinburgh) is located in Scotland, the six others are296

all located in Cambridgeshire and Oxfordshire, England. In this section we are mainly297

concerned with visual presentation of interactions rather than with substantive analysis.298

4.1 Biadditive visualisation299

First, we fit the biadditive model as outlined in Section 2.2. Table 2 shows that factor300

B, Trial Site, is the most important main factor and the interaction between A, rate of301

nitrogen application, and B is the most important two-way interaction. The main effects302

constitute 84% of total variation in grain yield, the two-way interactions 14% and the303

three-way interaction 2%.304

Table 2 also provides the sums-of-squares of the low-rank approximations to the two-305

way interaction between B and C, according to Equation (7) with approximations to306

degrees of freedom as suggested by Rao (1952) (see Section 2.2). Since Factor A has307

two levels, dfA = 1. Hence, this low-rank approximation does not apply to the AB308

and AC interactions: the full-rank approximation is already of the lowest rank possible.309

Were dfA > 1, the treatment of the low-rank approximations to interactions AB and310

AC would have been analogous to that of BC. Corresponding to BC, most information,311

79%, is captured in the first two dimensions.312

For this data, two-dimensional biplots of interactions with factor A are not relevant:313

A has only two levels, thus the interactions are one-dimensional. Figure 3 gives a series314

of equivalent biplots for interaction BC. In all cases, interpretation is through evaluating315

inner-products, either directly or indirectly. Figure 3a visualises the interaction BC in316

the conventional way. Often, the points are connected to the origin and perhaps endowed317

with arrows. The interactions of the varieties at the trial site in Edinburgh clearly deviate318

from those at the six English sites. A closer examination confirms that the McCullagh319

and Nelder dictum, cited at the beginning of this paper, holds. Interestingly, no clear320

distinction in interaction can be found between the regular and the semi-dwarf varieties.321

Figure 3a is useful for assessing global patterns in the data but no numerical values322

can be read off. For this, calibrated axes are needed. The technicalities behind the323

construction of such axes simultaneously for sites and varieties is explained in Appendix324

A. The biplots in the other panels make use of such calibrated axes. They give the same325
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information as Figure 3a, but in 3b and 3c, while varieties continue to be represented by326

points, trial sites are represented by calibrated axes. The Figures show exclusion (3b)327

vs. inclusion (3c) of main effects but otherwise are identical; thus Figure 3b displays328

the biadditive interactions after the main effects have been partialed out, whereas these329

are still included in Figure 3c. The only difference between panels (b) and (c) is the330

calibration of the axes: where in panel (b) all axes have value 0 at the origin, this331

is not the case in panel (c). Figure (3d) shows calibrated axes for both varieties and332

sites. Note that a variety projected onto a site-axis gives the same calibration as the333

same site projected onto the corresponding variety axis. For example, consider variety334

Sportsman and site Edinburgh (as shown in Figure 3(d)): The projection of Sportsman335

onto Edinburgh is −30.33 g/sqm, which is equivlent to the projection of Edinburgh onto336

Sportsman. The same holds for all other pairs of sites and varieties.337

* TABLES 1 & 2, FIGURES 3 & 4 ABOUT HERE *338

Thus, with Figure 3(a) inner products are not needed to rank varieties within a site or339

to rank sites growing the same variety but it is difficult to make numerical comparisons340

between sites and varieties. This problem is reduced by using the calibrations in Figure341

3(b) and Figure 3(c) but the calibration markers tend to lead to problems of visual342

overload.343

Figure 4 is a compromise which preserves most of the useful information and is easy344

to use. Essentially, it consists of taking the axes of one set of calibrations (say, the seven345

sites) and laying them horizontally on successive lines with a common origin in a so-346

called parallel coordinate plot (cf. Inselberg, 2009). The different interval of calibration347

on each axis will be clear and can be removed by normalising each line to have an equal348

interval of calibration. Then, the calibration markers on the successive lines can be349

removed and replaced by a single calibrated axis applicable to all sites, as shown in350

Figure 4. Parallel coordinate plots date back to (at least) the 17th century (d’Ocagne,351

1885) and gained popularity through the work of Inselberg in the past four decades352

(Inselberg, 2009). The usage of parallel coordinate plots in the context of three-way353

analysis is not new (cf. Kroonenberg, 2008, p. 400), but this paper is, to our knowledge,354

the first that employs parallel coordinate plots to visualise three-way interactions.355

In this example, there is no logical ordering for the sites. Rather than the alphabet-356

ical ordering in Figure 4, any other of the J ! = 5040 orderings can be used. Although357

all variations provide exactly the same information, some allow for easier interpretation358

because there is less ‘clutter’, such as fewer line-crossings. When J is not too large,359

one can resort to manual reordering but for larger values of J , an automated proce-360

dure is preferable. We propose such a procedure, based on correspondence analysis (cf.361
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Greenacre, 2007). Technicalities of this procedure are provided in Appendix B and Fig-362

ure 5 shows the optimal ordering. This figure provides exactly the same information as363

Figure 4 but is easier to interpret.364

Now, the performance of every variety at each site may be readily compared directly.365

The main effects may be included if desired but we have not done this with these data366

because of the disproportionate main effect of Edinburgh (a value +232 grams per square367

meter; whereas the other six sites have main effects between −113 and +46 grams per368

square meter). Of course, an equivalent procedure can be used for the varieties rather369

than for the sites.370

4.2 Triadditive visualisation371

Having eliminated all main and multiplicative effects according to (10), Candecomp-372

Parafac approximations of different rank were fitted to Ẑ. Table 3 displays the break-373

down of the ABC-interaction SS of 49812 into approximations of rank 1 to 6. Rank 2374

and 3 approximation explain 63% and 78% of the variation in grain yield, respectively.375

Thus, visualisations on the basis of these approximations will yield useful insight into376

the structure of Ẑ.377

Figure 1 visualises the rank 1 and 2 approximations to the three-way interaction378

term. The highlighted interaction in each figure is that between a low rate of nitrogen379

application, trial site Edinburgh variety Kinsmen. The data have been scaled by α, β,380

and γ in such a way that381

I∑
i=1

R∑
r=1

u2ir =

J∑
j=1

R∑
r=1

v2jr =

K∑
k=1

R∑
r=1

w2
kr

because this provided a satisfactory visual setting for interpretation (the dispersion in382

the three dimensions is made the same; without affecting the volume of the tetrahedra).383

Figure 1(left) visualises the rank R = 1 approximation and shows how, by looking at384

tetrahedra, one can quickly get an impression of a specific triadditive interaction. Figure385

1(right) displays the visualisation for R = 2, via three biplots for the three factors. Each386

biplot may be visualised in one of the three orthogonal planes (uv, uw and vw) through387

the origin. The interaction of interest remains proportional to the volume of a single388

tetrahedron.389

A three-dimensional rank R = 3 visualisation is crossing the line of useful application390

(as outlined in Section 3.2). It is much more simple to look at a two-dimensional391

visualisation through a so-called triplot. Here, we use the term triplot in the same392
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way as in Albers and Gower (2014). According to Williams and Gardner-Lubbe (2016),393

the use of the term ‘triplot’ in this context dates back to Araújo (2009). Meulman394

et al. (2004, p. 50) also use this term, in a slightly different context related to biplots.395

Furthermore, the term triplot is also used in for triangular diagrams, which is a unrelated396

field of work. As the contexts are fully different, this should not cause confusion.) In397

this display, each IJ combination of levels is represented by a calibrated axis while each398

level of K is represented by a point (for the Blackman data we have I = 2, J = 7 and399

K = 12). Thus, an axis combining a Site (e.g. Edinburgh) with the Higher Level of400

Nitrogen (e.g. denoted by H) might be labelled “Edinburgh H”. While another axis401

might be labelled “Edinburgh L”, where L denotes a Lower Level of Nitrogen. Because402

I = 2 the two Edinburgh axes coincide, as do the axes for all other sites.403

Figure 6 displays such a triplot for the interaction array Ẑ. All IJ combinations of404

nitrogen-rate and trial-site are displayed by calibrated axes but only J = 7, rather than405

IJ = 14, distinct axes are necessary. We use the convention that the label “Edinburgh”406

denotes not only the site but also the high rate of nitrogen. The marker for the low407

rate of nitrogen in Edinburgh could be placed at the other end of the axis but it is408

superfluous. The markers on the axis are positive in the section between the label (e.g.409

Edinburgh) and the origin and negative away from the origin; the opposite holds for the410

implicit Edinburgh×low marker. All K = 12 varieties are displayed as points.411

By projecting variety k onto the combined rate-site axes, triadic rank-two interactions412

can be read directly off the calibrations to give the estimation of the term for variety k413

and all combinations of levels of i and j. A ‘projection circle’ on the diameter determined414

by the point displaying the variety and through the origin, gives a convenient way of415

accessing all projections of the variety onto the J = 7 rate×trial axes together with their416

associated calibrations. Such projection circles have been introduced in the context of417

biplots in Gower and Hand (1996) and Gower et al. (2011), and in the context of triplots418

in Albers and Gower (2014).419

Figure 6 shows this visualisation for the Blackman data where the point ‘Cap’ rep-420

resents the variety Cappelle. Sites Begbroke, Trumpinton, and Earith give positive421

interactions, Boxworth about zero and sites Craftshill and Fowlmore give negative in-422

teractions between Cappelle and high levels of Nitrogen. The signs are reversed for423

interaction with low levels of Nitrogen. The intervals of calibration may be refined at424

will but here we give only a marker 10 grams per square meter. It is important to keep425

in mind when interpreting these triadic interactions that these are the values after main426

and biadditive effects (accounting for 98.07% of variation, see Table 2) have been par-427

tialed out: The triplot focuses on the remaining 1.93% of variation and large differences428

in the triplot denote, in this example, only relatively small differences on an overall level.429
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Note that (a) although this two-dimensional visualisation may look like a biplot it430

involves three factors and thus is really a triplot and (b) it remains valid when I >431

2, though without the simplifactions of coincident axes, which might introduce visual432

overlad. Both Albers and Gower (2014) and Williams and Gardner-Lubbe (2016) provide433

examples of such a triplot with I = 3.434

5 Discussion435

Essentially, our approach is to adopt the usual linear models for representing main effects,436

two factor interactions and three factor interactions. The two factor interactions may be437

approximated by multiplicative bilinear terms and the three factor interactions may be438

approximated by multiplicative trilinear terms. In the bilinear case the approximations439

have standard least-square estimates, based on singular value decompositions, but in the440

trilinear case, we propose that the estimates be conditioned on the residuals from the441

saturated bilinear model. In principal, it would be possible to do a full unconditional442

least-squares solution but the conditional approach is easier and avoids difficulties with443

constraints. In the bilinear case identification constraints are not substantive but in444

the full trilinear case there is a troubling substantive interaction between the bilinear445

and trilinear parameter constraints. This problem is avoided when using the conditional446

method of analysis. The suggestion of applying a triadditive model to three-way residuals447

has also been made by van Eeuwijk and Kroonenberg (1998), who used a Tucker3 model448

rather than the Candecomp-Parafac model. Williams and Gardner-Lubbe (2016) use an449

orthogonal Parafac decomposition as basis for their visualisations and arrive at figures450

similar to Figure 3(a) on basis of geometric arguments.451

We do not claim that the biadditive and triadditive models are substantive models452

per se, although in certain applications they could be. We make use of biadditive and453

triadditive models as a useful framework to base our visualisations on. A special virtue454

of biadditive models is the way that they lend themselves to simple biplots for visu-455

alising the interactions between rows and columns of the two classifying factors. This456

is particularly useful when biadditive interactions are adequately approximated in two457

dimensions and in this paper we have proposed how these biplots may be enhanced. It458

would be helpful if similar visualisations were available for triadditive interactions and,459

following Albers and Gower (2014), we demonstrate how two-dimensional triplots for460

rank-two tridimensional interaction tables may be formed, in which all three-dimensional461

tetrahedronal information is retained. When one factor is at two levels, some striking462

simplifictions occur, as is demonstrated in Section 4). When I, J , K > 2, there is a463
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risk of visual overload. Such overload can be reduced through smart choices, construct-464

ing parallel coordinate plots (such as Figure 5) for triplots and through interactivity.465

For instance, markers for calibrated axes could be displayed only when a certain axis466

is selected, and one could use tick boxes to select which of the IJ axes and K points467

should be shown. Finding out which approaches work best against visual overload is an468

interesting path for future research. Furthermore, additional smart choices w.r.t. cali-469

bration, (arbitrary) rotation and use of colour can enhance the interpretability (Blasius470

et al., 2009).471

Rank two triplot displays in two dimensions seem to be at the bounds of practical472

utility. Attempts to visualise rank-three displays in three dimensions are not promising.473

Fortunately, as with biadditive biplots, it is the rank-two displays that are the most474

useful and rank two tridimensional visualisations show similar promise.475

At the outset of this paper we drew attention to the adage of McCullagh and Nelder476

about interactions being predicated on their main effects and lower orders of interaction.477

Our approach of conditioning three-order interactions on main effects and two-factor in-478

teractions is in accord with the adage. Nevertheless, at several points in our discussion479

we have seen that main effects and lower order interactions may be ignored when fitting480

a higher-order interaction. Sometimes, but not always, it seems that, as with Tukey’s481

model of non-additivity, additive terms may be absorbed in equivalent multiplicative482

parameterisations of the model. It seems to us that it is always wise to keep the McCul-483

lagh and Nelder adage in mind but there are occasions, especially with multiplicative484

relationships, when it is less persuasive.485

Software486

All computations have been performed in R, using self-written code (available upon re-487

quest from the first author). For the Candecomp-Parafac decompositions the R-package488

ThreeWay (Giordani et al., 2014) has been used. For the correspondence analyses, the489

R-package ca (Nenadic and Greenacre, 2007) has been used.490
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Appendices496

A Calibrated biplots for biadditive interaction arrays497

In the notation of Section 2.1 it is useful, especially when R = 2, to plot the rows of cr498

(r = 1, . . . , I) to give I row-points and the rows of c̃s (s = 1, . . . , J) to give J column-499

points. In this biplot, the inner-product determined by a pair of points, one from each500

set, gives a visualisation of the corresponding interaction. Here cr and c̃s derive from501

the SVD of X = UΣV′ and we set cr = urΣ
α and c̃s = vsΣ

β where usually α+β = 1.502

If we project c̃s onto the vector cr we find
[
Σβv′s

(
vsΣ

2βv′s
)−1

vsΣ
β
]

Σαu′r which,503

when α+ β = 1 simplifies to504 [
Σβv′s

(
vsΣ

2βv′s
)−1]

vsΣu′r =
[
Σβv′s

(
vsΣ

2βv′s
)−1]

zrs. (A1)

In (A1), only the interaction zrs depends on r so all points r = 1, . . . , I are collinear505

on an axis with direction given by the term of (A1) given in square brackets. It follows506

that
[
Σβv′s

(
vsΣ

2βv′s
)−1]

may be used to calibrate the axis with values µ1, µ2, µ3, . . .507

usually chosen with an even calibration interval κ as µ, µ± κ, µ± 2κ, . . .. Setting µ = 0508

gives the scale for zµs. If we set µ = ar the markers include the main effect of the ith509

main effect ar, so giving the combined effects of the main effect and interactions of r510

with all the columns s. Note that this merely requires a cosmetic change to the markers511

and not any extra calculation.512

Similarly, all rows r = 1, 2, . . . , I may be shown as calibrated axes and if we project513

cr onto the vector c̃s all columns s = 1, 2, . . . , J may be shown as axes calibrated in514

terms of
[
Σαu′r

(
urΣ

2αu′r
)−1]

.515

Note that the marker for zrs occurs twice, once on cr and once on c̃s. Furthermore,516

the distances of the two markers from the origin are unequal. It would be elegant to517

arrange equal scaling but we have not succeeded and believe it to be impossible.518

B Automatic ordering of the parallel axes519

In constructing parallel coordinate plots as Figures 4 and 5, the ordering of the axes520

usually is irrelevant (unless the corresponding factor is at some ordinal level). In that521

case, visual information might be gained by rearranging the axes optimally.522

In total, J ! orderings are possible and, by excluding mirrorings (‘ABCD’ yields the523

same information as ‘DCBA’), there are J !/2 orderings to choose between.524

This appendix explains an automated procedure to do so, based on correspondence525
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analysis (CA). CA is similar to principal component analysis, but for nominal-labelled526

data.527

Let Y be the J×K table with the projections for the K varieties on the J sites (either528

with or without main effects). The goal is to rearrange the J columns optimally; i.e.529

such that projections on adjacent axes are as close as possible. Since correspondence530

analysis is designed for non-negative data, we shift Y such that all values are non-531

negative, i.e. through Y′ = Y − min Y. Since the row sums of Y are zero (since the532

average interaction per site is zero), and hence the row sums of Y′ are equal, some533

simplifications with respect to general correspondence analysis are possible, although534

the gain in computation speed is negligible for small values of J (such as in Section 4).535

The simplified algorithm is as follows:536

1. Compute M = S − wJw′K , where S = Y′/
∑∑

y′jk, wJ is the J × 1 vector537

of row weights with equal entries 1/J , and wK is the K × 1 vector with entries538 ∑
j y
′
jk/
∑
jk y
′
jk;539

2. Perform a SVD on M: M = UΣV′ under the restrictions U′U = JI and540

V′diag(wK)V = I;541

3. Compute FJ = UΣ;542

4. Rearrange the J rows of Y according to the ordering in the first column of FJ .543

In Step 4, one could rearrange the rows ascending or descending, which yields two544

visualisations that are one another’s mirror image.545
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Tables630

Trial site abbreviation
Craftshill Cra
Begbroke Beg
Fowlmere Fow
Trumpington Tru
Boxworth Box
Earith Eea
Edinburgh Edi

Variety abbreviation
Cappelle Cap
Ranger Ran
Huntsman Hun
Templar Tem
Kinsman Kin
Fundin Fun
Durin Dur
Hobbit Hob
Sportsman Spo
TJB259.95 259
TJB325.464 325
Hustler Hus

Table 1: Overview of the trial sites (left) and varieties of wheat (right) of the Blackman data
set, as well as the abbreviations used in later visualisations.
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Factor SS df % of total
A (rate of nitrogen application) 125078 1 4.84
B (trial site) 1854207 6 71.72
C (variety of wheat) 196211 11 7.59
AB 221481 6 8.57
AC 8021 11 0.31
BC 130411 66 5.04
r = 1 60961 (16)
r = 2 42642 (14)
r = 3 12623 (12)
r = 4 8334 (10)
r = 5 3799 (8)
r = 6 2053 (6)

ABC 49812 66 1.93
Total 2585224 167

Table 2: ANOVA-breakdown of Blackman’s data. The SS for the rows with specific values for r
are obtained via (7). The corresponding degrees of freedom are obtained via the rule of thumb
explained in Section 2.2. (Note that, since dfA = 1, no similar breakdown for the AB and AC
interaction is possible.)
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Rank S Fit (%) Increment
1 35.40 35.40
2 63.10 27.70
3 78.62 15.52
4 88.89 10.27
5 97.74 8.85
6 100.00 2.26

Table 3: Candecomp-Parafac approximations to the three-way interaction ABC for different
ranks S for Blackman’s data.
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Figures631
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Figure 1: Rank R = 1 (left) and R = 2 (right) fits to the triadditive terms for Blackman’s data.
Blue triangles refer to Factor A (the levels of nitrogen), red circles to Factor B (trial sites) and
brown squares to Factor C (varieties). For the R = 1 fit, all points lie on orthogonal axes, for
the R = 2 fit, they all lie on orthogonal planes. The tetrahedra corresponds to the interaction
“low nitrogen × Edinburgh × Kinsman”.
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Figure 2: A demonstration of a three-way interaction for the rank R = 3 fit to triadditive
terms, for a constructed example with conveniently chosen coordinates. All levels of all factors
now have coordinates that are not restricted to (orthogonal) axes nor planes. The three points
A, B, C, are projected onto the vw, uw and uv planes, respectively. Subsequently, the polygon
OA’B’C’ is constructed (left). Similarly, polygons are constructed for projections onto uw, uv
and vw (middle) and uv, vw and uw (right). The interaction ABC is proportional to the sum
of the volumes of the three tetrahedra thus obtained.
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Figure 3: Visualisation of the rank R = 2 approximation to the biadditive interaction between
factors B and C. First (a) a regular biplot is given (with + indicating the origin; trial locations
are denoted by ‘·’ and varieties by a triangle), followed by a biplot where trial sites have been
replaced by calibrated axes; where calibration is done with µ = 0 (b) and µ = bj (c). Finally,
panel (d) shows a biplot where both varieties and trial sites are represented by calibrated axes.
Abbreviations in bold font correspond to trial sites. See Table 1 for the full labels for the
abbreviations.
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Figure 4: For all 7 trial sites the projections of the varieties (with µ = 0) are given in this
single-axis diagram. A single calibrated axis applies to all sites. Abbreviations in bold font
correspond to trial sites. See Table 1 for the full labels for the abbreviations.
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Figure 5: A similar visualisation as Figure 4, now with the ordening of sites according to the
correspondence analysis algorithm outlined in Appendix B.
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Figure 6: Triplot. Axes represent rates and sites. Since I = 2, the axes for low and high rates
coincide. Site labels are placed at the positive end of the ‘high’-axis. The signs are reversed
for predicting interactions to the low rate of nitrogen. A single positive and negative marker is
shown on each axes; these correspond to 10 grams per square meter grain yield. A projection
circle through Cappelle cuts the axes at the calibrations corresponding to the seven calibration
points giving the rank-two triadic interactions. These are positive or negative, depending on
whether they occur on the same or opposite side of the origin as the site label. Abbreviations
in bold font correspond to trial sites. See Table 1 for the full labels for the abbreviations.

31


