4,679 research outputs found

    New bounds on the signed total domination number of graphs

    Full text link
    In this paper, we study the signed total domination number in graphs and present new sharp lower and upper bounds for this parameter. For example by making use of the classic theorem of Turan, we present a sharp lower bound on this parameter for graphs with no complete graph of order r+1 as a subgraph. Also, we prove that n-2(s-s') is an upper bound on the signed total domination number of any tree of order n with s support vertices and s' support vertives of degree two. Moreover, we characterize all trees attainig this bound.Comment: This paper contains 11 pages and one figur

    Extension of One-Dimensional Proximity Regions to Higher Dimensions

    Get PDF
    Proximity maps and regions are defined based on the relative allocation of points from two or more classes in an area of interest and are used to construct random graphs called proximity catch digraphs (PCDs) which have applications in various fields. The simplest of such maps is the spherical proximity map which maps a point from the class of interest to a disk centered at the same point with radius being the distance to the closest point from the other class in the region. The spherical proximity map gave rise to class cover catch digraph (CCCD) which was applied to pattern classification. Furthermore for uniform data on the real line, the exact and asymptotic distribution of the domination number of CCCDs were analytically available. In this article, we determine some appealing properties of the spherical proximity map in compact intervals on the real line and use these properties as a guideline for defining new proximity maps in higher dimensions. Delaunay triangulation is used to partition the region of interest in higher dimensions. Furthermore, we introduce the auxiliary tools used for the construction of the new proximity maps, as well as some related concepts that will be used in the investigation and comparison of them and the resulting graphs. We characterize the geometry invariance of PCDs for uniform data. We also provide some newly defined proximity maps in higher dimensions as illustrative examples

    Upper bounds on the k-forcing number of a graph

    Full text link
    Given a simple undirected graph GG and a positive integer kk, the kk-forcing number of GG, denoted Fk(G)F_k(G), is the minimum number of vertices that need to be initially colored so that all vertices eventually become colored during the discrete dynamical process described by the following rule. Starting from an initial set of colored vertices and stopping when all vertices are colored: if a colored vertex has at most kk non-colored neighbors, then each of its non-colored neighbors becomes colored. When k=1k=1, this is equivalent to the zero forcing number, usually denoted with Z(G)Z(G), a recently introduced invariant that gives an upper bound on the maximum nullity of a graph. In this paper, we give several upper bounds on the kk-forcing number. Notable among these, we show that if GG is a graph with order n2n \ge 2 and maximum degree Δk\Delta \ge k, then Fk(G)(Δk+1)nΔk+1+min{δ,k}F_k(G) \le \frac{(\Delta-k+1)n}{\Delta - k + 1 +\min{\{\delta,k\}}}. This simplifies to, for the zero forcing number case of k=1k=1, Z(G)=F1(G)ΔnΔ+1Z(G)=F_1(G) \le \frac{\Delta n}{\Delta+1}. Moreover, when Δ2\Delta \ge 2 and the graph is kk-connected, we prove that Fk(G)(Δ2)n+2Δ+k2F_k(G) \leq \frac{(\Delta-2)n+2}{\Delta+k-2}, which is an improvement when k2k\leq 2, and specializes to, for the zero forcing number case, Z(G)=F1(G)(Δ2)n+2Δ1Z(G)= F_1(G) \le \frac{(\Delta -2)n+2}{\Delta -1}. These results resolve a problem posed by Meyer about regular bipartite circulant graphs. Finally, we present a relationship between the kk-forcing number and the connected kk-domination number. As a corollary, we find that the sum of the zero forcing number and connected domination number is at most the order for connected graphs.Comment: 15 pages, 0 figure

    Online Learning with Feedback Graphs: Beyond Bandits

    Get PDF
    We study a general class of online learning problems where the feedback is specified by a graph. This class includes online prediction with expert advice and the multi-armed bandit problem, but also several learning problems where the online player does not necessarily observe his own loss. We analyze how the structure of the feedback graph controls the inherent difficulty of the induced TT-round learning problem. Specifically, we show that any feedback graph belongs to one of three classes: strongly observable graphs, weakly observable graphs, and unobservable graphs. We prove that the first class induces learning problems with Θ~(α1/2T1/2)\widetilde\Theta(\alpha^{1/2} T^{1/2}) minimax regret, where α\alpha is the independence number of the underlying graph; the second class induces problems with Θ~(δ1/3T2/3)\widetilde\Theta(\delta^{1/3}T^{2/3}) minimax regret, where δ\delta is the domination number of a certain portion of the graph; and the third class induces problems with linear minimax regret. Our results subsume much of the previous work on learning with feedback graphs and reveal new connections to partial monitoring games. We also show how the regret is affected if the graphs are allowed to vary with time
    corecore