548 research outputs found

    One-Point Suspensions and Wreath Products of Polytopes and Spheres

    Get PDF
    It is known that the suspension of a simplicial complex can be realized with only one additional point. Suitable iterations of this construction generate highly symmetric simplicial complexes with various interesting combinatorial and topological properties. In particular, infinitely many non-PL spheres as well as contractible simplicial complexes with a vertex-transitive group of automorphisms can be obtained in this way.Comment: 17 pages, 8 figure

    Exponential Lower Bounds for Polytopes in Combinatorial Optimization

    Get PDF
    We solve a 20-year old problem posed by Yannakakis and prove that there exists no polynomial-size linear program (LP) whose associated polytope projects to the traveling salesman polytope, even if the LP is not required to be symmetric. Moreover, we prove that this holds also for the cut polytope and the stable set polytope. These results were discovered through a new connection that we make between one-way quantum communication protocols and semidefinite programming reformulations of LPs.Comment: 19 pages, 4 figures. This version of the paper will appear in the Journal of the ACM. The earlier conference version in STOC'12 had the title "Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds

    On the sum of the Voronoi polytope of a lattice with a zonotope

    Full text link
    A parallelotope PP is a polytope that admits a facet-to-facet tiling of space by translation copies of PP along a lattice. The Voronoi cell PV(L)P_V(L) of a lattice LL is an example of a parallelotope. A parallelotope can be uniquely decomposed as the Minkowski sum of a zone closed parallelotope PP and a zonotope Z(U)Z(U), where UU is the set of vectors used to generate the zonotope. In this paper we consider the related question: When is the Minkowski sum of a general parallelotope and a zonotope P+Z(U)P+Z(U) a parallelotope? We give two necessary conditions and show that the vectors UU have to be free. Given a set UU of free vectors, we give several methods for checking if P+Z(U)P + Z(U) is a parallelotope. Using this we classify such zonotopes for some highly symmetric lattices. In the case of the root lattice E6\mathsf{E}_6, it is possible to give a more geometric description of the admissible sets of vectors UU. We found that the set of admissible vectors, called free vectors, is described by the well-known configuration of 2727 lines in a cubic. Based on a detailed study of the geometry of PV(e6)P_V(\mathsf{e}_6), we give a simple characterization of the configurations of vectors UU such that PV(E6)+Z(U)P_V(\mathsf{E}_6) + Z(U) is a parallelotope. The enumeration yields 1010 maximal families of vectors, which are presented by their description as regular matroids.Comment: 30 pages, 4 figures, 4 table

    Shadows of Newton Polytopes

    Get PDF
    We define the shadow complexity of a polytope P as the maximum number of vertices in a linear projection of P to the plane. We describe connections to algebraic complexity and to parametrized optimization. We also provide several basic examples and constructions, and develop tools for bounding shadow complexity
    • …
    corecore