4 research outputs found

    Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

    Full text link
    Natural image matting is an important problem in computer vision and graphics. It is an ill-posed problem when only an input image is available without any external information. While the recent deep learning approaches have shown promising results, they only estimate the alpha matte. This paper presents a context-aware natural image matting method for simultaneous foreground and alpha matte estimation. Our method employs two encoder networks to extract essential information for matting. Particularly, we use a matting encoder to learn local features and a context encoder to obtain more global context information. We concatenate the outputs from these two encoders and feed them into decoder networks to simultaneously estimate the foreground and alpha matte. To train this whole deep neural network, we employ both the standard Laplacian loss and the feature loss: the former helps to achieve high numerical performance while the latter leads to more perceptually plausible results. We also report several data augmentation strategies that greatly improve the network's generalization performance. Our qualitative and quantitative experiments show that our method enables high-quality matting for a single natural image. Our inference codes and models have been made publicly available at https://github.com/hqqxyy/Context-Aware-Matting.Comment: This is the camera ready version of ICCV2019 pape

    Efficient and Accurate Disparity Estimation from MLA-Based Plenoptic Cameras

    Get PDF
    This manuscript focuses on the processing images from microlens-array based plenoptic cameras. These cameras enable the capturing of the light field in a single shot, recording a greater amount of information with respect to conventional cameras, allowing to develop a whole new set of applications. However, the enhanced information introduces additional challenges and results in higher computational effort. For one, the image is composed of thousand of micro-lens images, making it an unusual case for standard image processing algorithms. Secondly, the disparity information has to be estimated from those micro-images to create a conventional image and a three-dimensional representation. Therefore, the work in thesis is devoted to analyse and propose methodologies to deal with plenoptic images. A full framework for plenoptic cameras has been built, including the contributions described in this thesis. A blur-aware calibration method to model a plenoptic camera, an optimization method to accurately select the best microlenses combination, an overview of the different types of plenoptic cameras and their representation. Datasets consisting of both real and synthetic images have been used to create a benchmark for different disparity estimation algorithm and to inspect the behaviour of disparity under different compression rates. A robust depth estimation approach has been developed for light field microscopy and image of biological samples
    corecore