18,294 research outputs found

    A novel approach to recognition of the detected moving objects in non-stationary background using heuristics and colour measurements : a thesis presented in partial fulfilment of the requirement for the degree of Master of Engineering at Massey University, Albany, New Zealand

    Get PDF
    Computer vision has become a growing area of research which involves two fundamental steps, object detection and object recognition. These two steps have been implemented in real world scenarios such as video surveillance systems, traffic cameras for counting cars, or more explicit detection such as detecting faces and recognizing facial expressions. Humans have a vision system that provides sophisticated ways to detect and recognize objects. Colour detection, depth of view and our past experience helps us determine the class of objects with respect to object’s size, shape and the context of the environment. Detection of moving objects on a non-stationary background and recognizing the class of these detected objects, are tasks that have been approached in many different ways. However, the accuracy and efficiency of current methods for object detection are still quite low, due to high computation time and memory intensive approaches. Similarly, object recognition has been approached in many ways but lacks the perceptive methodology to recognise objects. This thesis presents an improved algorithm for detection of moving objects on a non-stationary background. It also proposes a new method for object recognition. Detection of moving objects is initiated by detecting SURF features to identify unique keypoints in the first frame. These keypoints are then searched through individually in another frame using cross correlation, resulting in a process called optical flow. Rejection of outliers is performed by using keypoints to compute global shift of pixels due to camera motion, which helps isolate the points that belong to the moving objects. These points are grouped into clusters using the proposed improved clustering algorithm. The clustering function is capable of adapting to the search radius around a feature point by taking the average Euclidean distance between all the feature points into account. The detected object is then processed through colour measurement and heuristics. Heuristics provide context of the surroundings to recognize the class of the object based upon the object’s size, shape and the environment it is in. This gives object recognition a perceptive approach. Results from the proposed method have shown successful detection of moving objects in various scenes with dynamic backgrounds achieving an efficiency for object detection of over 95% for both indoor and outdoor scenes. The average processing time was computed to be around 16.5 seconds which includes the time taken to detect objects, as well as recognize them. On the other hand, Heuristic and colour based object recognition methodology achieved an efficiency of over 97%

    Model-based vision for space applications

    Get PDF
    This paper describes a method for tracking moving image features by combining spatial and temporal edge information with model based feature information. The algorithm updates the two-dimensional position of object features by correlating predicted model features with current image data. The results of the correlation process are used to compute an updated model. The algorithm makes use of a high temporal sampling rate with respect to spatial changes of the image features and operates in a real-time multiprocessing environment. Preliminary results demonstrate successful tracking for image feature velocities between 1.1 and 4.5 pixels every image frame. This work has applications for docking, assembly, retrieval of floating objects and a host of other space-related tasks

    A comparative evaluation of interest point detectors and local descriptors for visual SLAM

    Get PDF
    Abstract In this paper we compare the behavior of different interest points detectors and descriptors under the conditions needed to be used as landmarks in vision-based simultaneous localization and mapping (SLAM). We evaluate the repeatability of the detectors, as well as the invariance and distinctiveness of the descriptors, under different perceptual conditions using sequences of images representing planar objects as well as 3D scenes. We believe that this information will be useful when selecting an appropriat

    CoMaL Tracking: Tracking Points at the Object Boundaries

    Full text link
    Traditional point tracking algorithms such as the KLT use local 2D information aggregation for feature detection and tracking, due to which their performance degrades at the object boundaries that separate multiple objects. Recently, CoMaL Features have been proposed that handle such a case. However, they proposed a simple tracking framework where the points are re-detected in each frame and matched. This is inefficient and may also lose many points that are not re-detected in the next frame. We propose a novel tracking algorithm to accurately and efficiently track CoMaL points. For this, the level line segment associated with the CoMaL points is matched to MSER segments in the next frame using shape-based matching and the matches are further filtered using texture-based matching. Experiments show improvements over a simple re-detect-and-match framework as well as KLT in terms of speed/accuracy on different real-world applications, especially at the object boundaries.Comment: 10 pages, 10 figures, to appear in 1st Joint BMTT-PETS Workshop on Tracking and Surveillance, CVPR 201

    A graphical model based solution to the facial feature point tracking problem

    Get PDF
    In this paper a facial feature point tracker that is motivated by applications such as human-computer interfaces and facial expression analysis systems is proposed. The proposed tracker is based on a graphical model framework. The facial features are tracked through video streams by incorporating statistical relations in time as well as spatial relations between feature points. By exploiting the spatial relationships between feature points, the proposed method provides robustness in real-world conditions such as arbitrary head movements and occlusions. A Gabor feature-based occlusion detector is developed and used to handle occlusions. The performance of the proposed tracker has been evaluated on real video data under various conditions including occluded facial gestures and head movements. It is also compared to two popular methods, one based on Kalman filtering exploiting temporal relations, and the other based on active appearance models (AAM). Improvements provided by the proposed approach are demonstrated through both visual displays and quantitative analysis
    corecore