982 research outputs found

    An enhanced staining method K-B-2R staining for three-dimensional nerve reconstruction

    Get PDF
    BACKGROUND:Three-dimensional (3D) reconstruction of human peripheral nerves, as a useful tool to understand the nerve internal information and functional basis, has become an important area of research in the peripheral nerve field. METHODS:In this study, we proposed a two-dimensional (2D) Karnovsky-Roots toluidine blue ponceau 2R (K-B-2R) staining method based upon conventional Karnovsky-Roots staining. It significantly improved the ability to display nerve fascicles, motor and sensory nerve fiber textures. In this method, Karnovsky-Roots staining was carried out, followed by toluidine blue counterstain and ponceau 2R counterstain. RESULTS:Comparisons were conducted between the three methods in staining of median nerve sections, which showed similar distribution characters in acetylcholinesterase-positive sites. The additional counterstaining did not change the basis of Karnovsky-Roots staining. However, the resulting images from this new method significantly facilitated the subsequent 3D nerve reconstruction and 3D printing. CONCLUSIONS:These results show that the new staining method significantly enhanced the display qualities of nerve fascicle edges and fiber textures of motor and sensory nerves and facilitated 3D nerve reconstruction.Peng Luo, Jianghui Dong, Jian Qi, Yi Zhang, Xiaolin Liu, Yingchun Zhong, Cory J. Xian and Liping Wan

    Quantitative Ultrasound and B-mode Image Texture Features Correlate with Collagen and Myelin Content in Human Ulnar Nerve Fascicles

    Get PDF
    We investigate the usefulness of quantitative ultrasound (QUS) and B-mode texture features for characterization of ulnar nerve fascicles. Ultrasound data were acquired from cadaveric specimens using a nominal 30 MHz probe. Next, the nerves were extracted to prepare histology sections. 85 fascicles were matched between the B-mode images and the histology sections. For each fascicle image, we selected an intra-fascicular region of interest. We used histology sections to determine features related to the concentration of collagen and myelin, and ultrasound data to calculate backscatter coefficient (-24.89 dB ±\pm 8.31), attenuation coefficient (0.92 db/cm-MHz ±\pm 0.04), Nakagami parameter (1.01 ±\pm 0.18) and entropy (6.92 ±\pm 0.83), as well as B-mode texture features obtained via the gray level co-occurrence matrix algorithm. Significant Spearman's rank correlations between the combined collagen and myelin concentrations were obtained for the backscatter coefficient (R=-0.68), entropy (R=-0.51), and for several texture features. Our study demonstrates that QUS may potentially provide information on structural components of nerve fascicles

    Imaging fascicular organisation in mammalian vagus nerve for selective VNS

    Get PDF
    Nerves contain a large number of nerve fibres, or axons, organised into bundles known as fascicles. Despite the somatic nervous system being well understood, the organisation of the fascicles within the nerves of the autonomic nervous system remains almost completely unknown. The new field of bioelectronics medicine, Electroceuticals, involves the electrical stimulation of nerves to treat diseases instead of administering drugs or performing complex surgical procedures. Of particular interest is the vagus nerve, a prime target for intervention due to its afferent and efferent innervation to the heart, lungs and majority of the visceral organs. Vagus nerve stimulation (VNS) is a promising therapy for treatment of various conditions resistant to standard therapeutics. However, due to the unknown anatomy, the whole nerve is stimulated which leads to unwanted off-target effects. Electrical Impedance Tomography (EIT) is a non-invasive medical imaging technique in which the impedance of a part of the body is inferred from electrode measurements and used to form a tomographic image of that part. Micro-computed tomography (microCT) is an ex vivo method that has the potential to allow for imaging and tracing of fascicles within experimental models and facilitate the development of a fascicular map. Additionally, it could validate the in vivo technique of EIT. The aim of this thesis was to develop and optimise the microCT imaging method for imaging the fascicles within the nerve and to determine the fascicular organisation of the vagus nerve, ultimately allowing for selective VNS. Understanding and imaging the fascicular anatomy of nerves will not only allow for selective VNS and the improvement of its therapeutic efficacy but could also be integrated into the study on all peripheral nerves for peripheral nerve repair, microsurgery and improving the implementation of nerve guidance conduits. Chapter 1 provides an introduction to vagus nerve anatomy and the principles of microCT, neuronal tracing and EIT. Chapter 2 describes the optimisation of microCT for imaging the fascicular anatomy of peripheral nerves in the experimental rat sciatic and pig vagus nerve models, including the development of pre-processing methods and scanning parameters. Cross-validation of this optimised microCT method, neuronal tracing and EIT in the rat sciatic nerve was detailed in Chapter 3. Chapter 4 describes the study with microCT with tracing, EIT and selective stimulation in pigs, a model for human nerves. The microCT tracing approach was then extended into the subdiaphragmatic branches of the vagus nerves, detailed in Chapter 5. The ultimate goal of human vagus nerve tracing was preliminarily performed and described in Chapter 6. Chapter 7 concludes the work and describes future work. Lastly, Appendix 1 (Chapter 8) is a mini review on the application of selective vagus nerve stimulation to treat acute respiratory distress syndrome and Appendix 2 is morphological data corresponding to Chapter 4

    MicroCT optimisation for imaging fascicular anatomy in peripheral nerves

    Get PDF
    Due to the lack of understanding of the fascicular organisation, vagus nerve stimulation (VNS) leads to unwanted off-target effects. Micro-computed tomography (microCT) can be used to trace fascicles from periphery and image fascicular anatomy. In this study, we present a simple and reproducible method for imaging fascicles in peripheral nerves with iodine staining and microCT for the determination of fascicular anatomy and organisation

    3D Engineered Peripheral Nerve: Towards A New Era of Patient-Specific Nerve Repair Solutions

    Get PDF
    Reconstruction of peripheral nerve injuries (PNIs) with substance loss remains challenging because of limited treatment solutions and unsatisfactory patient outcomes. Currently, nerve autografting is the first-line management choice for bridging critical-sized nerve defects. The procedure, however, is often complicated by donor site morbidity and paucity of nerve tissue, raising a quest for better alternatives. The application of other treatment surrogates, such as nerve guides remains questionable, and inefficient in irreducible nerve gaps. More importantly, these strategies lack customization for personalized patient therapy, which is a significant drawback of these nerve repair options. This negatively impacts the fascicle-to-fascicle regeneration process, critical to restoring the physiological axonal pathway of the disrupted nerve. Recently, the use of additive manufacturing (AM) technologies has offered major advancements to the bioengineering solutions for PNI therapy. These techniques aim to reinstate the native nerve fascicle pathway using biomimetic approaches, thereby augmenting end-organ innervation. AM-based approaches, such as 3D bioprinting, are capable of biofabricating 3D engineered nerve graft scaffolds in a patient-specific manner with high precision. Moreover, realistic in vitro models of peripheral nerve tissues that represent the physiologically and functionally relevant environment of human organs could also be developed. However, the technology is still nascent and faces major translational hurdles. In this review, we spotlighted the clinical burden of PNIs and most up-to-date treatment to address nerve gaps. Next, a summarized illustration of the nerve ultrastructure that guides research solutions is discussed. This is followed by a contrast of the existing bioengineering strategies used to repair peripheral nerve discontinuities. In addition, we elaborated on the most recent advances in 3D printing (3DP) and biofabrication applications in peripheral nerve modeling and engineering. Finally, the major challenges that limit the evolution of the field along with their possible solutions are also critically analyzed

    Organotopic organization of the porcine mid-cervical vagus nerve

    Get PDF
    Introduction: Despite detailed characterization of fascicular organization of somatic nerves, the functional anatomy of fascicles evident in human and large mammal cervical vagus nerve is unknown. The vagus nerve is a prime target for intervention in the field of electroceuticals due to its extensive distribution to the heart, larynx, lungs, and abdominal viscera. However, current practice of the approved vagus nerve stimulation (VNS) technique is to stimulate the entire nerve. This produces indiscriminate stimulation of non-targeted effectors and undesired side effects. Selective neuromodulation is now a possibility with a spatially-selective vagal nerve cuff. However, this requires the knowledge of the fascicular organization at the level of cuff placement to inform selectivity of only the desired target organ or function. / Methods and results: We imaged function over milliseconds with fast neural electrical impedance tomography and selective stimulation, and found consistent spatially separated regions within the nerve correlating with the three fascicular groups of interest, suggesting organotopy. This was independently verified with structural imaging by tracing anatomical connections from the end organ with microCT and the development of an anatomical map of the vagus nerve. This confirmed organotopic organization. / Discussion: Here we show, for the first time, localized fascicles in the porcine cervical vagus nerve which map to cardiac, pulmonary and recurrent laryngeal function (N = 4). These findings pave the way for improved outcomes in VNS as unwanted side effects could be reduced by targeted selective stimulation of identified organ-specific fiber-containing fascicles and the extension of this technique clinically beyond the currently approved disorders to treat heart failure, chronic inflammatory disorders, and more

    The topological distribution of olfactory receptor neuron axons in the olfactory bulb glomeruli of the rat : a confocal microscopic study with DiI staining

    Get PDF

    Three-dimensional reconstruction of peripheral nerve internal fascicular groups

    Get PDF
    Peripheral nerves are important pathways for receiving afferent sensory impulses and sending out efferent motor instructions, as carried out by sensory nerve fibers and motor nerve fibers. It has remained a great challenge to functionally reconnect nerve internal fiber bundles (or fascicles) in nerve repair. One possible solution may be to establish a 3D nerve fascicle visualization system. This study described the key technology of 3D peripheral nerve fascicle reconstruction. Firstly, fixed nerve segments were embedded with position lines, cryostat-sectioned continuously, stained and imaged histologically. Position line cross-sections were identified using a trained support vector machine method, and the coordinates of their central pixels were obtained. Then, nerve section images were registered using the bilinear method, and edges of fascicles were extracted using an improved gradient vector flow snake method. Subsequently, fascicle types were identified automatically using the multi-directional gradient and second-order gradient method. Finally, a 3D virtual model of internal fascicles was obtained after section images were processed. This technique was successfully applied for 3D reconstruction for the median nerve of the hand-wrist and cubital fossa regions and the gastrocnemius nerve. This nerve internal fascicle 3D reconstruction technology would be helpful for aiding peripheral nerve repair and virtual surgery.Yingchun Zhong, Liping Wang, Jianghui Dong, Yi Zhang, Peng Luo, Jian Qi, Xiaolin Liu and Cory J. Xia

    Fascicle localisation within peripheral nerves through evoked activity recordings: A comparison between electrical impedance tomography and multi-electrode arrays

    Get PDF
    BACKGROUND: The lack of understanding of fascicular organisation in peripheral nerves limits the potential of vagus nerve stimulation therapy. Two promising methods may be employed to identify the functional anatomy of fascicles within the nerve: fast neural electrical impedance tomography (EIT), and penetrating multi-electrode arrays (MEA). These could provide a means to image the compound action potential within fascicles in the nerve. NEW METHOD: We compared the ability to localise fascicle activity between silicon shanks (SS) and carbon fibre (CF) multi-electrode arrays and fast neural EIT, with micro-computed tomography (MicroCT) as an independent reference. Fast neural EIT in peripheral nerves was only recently developed and MEA technology has been used only sparingly in nerves and not for source localisation. Assessment was performed in rat sciatic nerves while evoking neural activity in the tibial and peroneal fascicles. RESULTS: Recorded compound action potentials were larger with CF compared to SS (∼700μV vs ∼300μV); however, background noise was greater (6.3μV vs 1.7μV) leading to lower SNR. Maximum spatial discrimination between Centres-of-Mass of fascicular activity was achieved by fast neural EIT (402±30μm) and CF MEA (414±123μm), with no statistical difference between MicroCT (625±17μm) and CF (p>0.05) and between CF and EIT (p>0.05). Compared to CF MEAs, SS MEAs had a lower discrimination power (103±51μm, p<0.05). COMPARISON WITH EXISTING METHODS: EIT and CF MEAs showed localisation power closest to MicroCT. Silicon MEAs adopted in this study failed to discriminate fascicle location. Re-design of probe geometry may improve results. CONCLUSIONS: Nerve EIT is an accurate tool for assessment of fascicular position within nerves. Accuracy of EIT and CF MEA is similar to the reference method. We give technical recommendations for performing multi-electrode recordings in nerves
    • …
    corecore