4,598 research outputs found

    Optimizing UAV Navigation: A Particle Swarm Optimization Approach for Path Planning in 3D Environments

    Get PDF
    This study explores the application of Particle Swarm Optimization (PSO) in Unmanned Aerial Vehicle (UAV) path planning within a simulated three-dimensional environment. UAVs, increasingly prevalent across various sectors, demand efficient navigation solutions that account for dynamic and unpredictable elements. Traditional pathfinding algorithms often fall short in complex scenarios, hence the shift towards PSO, a bio-inspired algorithm recognized for its adaptability and robustness. We developed a Python-based framework to simulate the UAV path planning scenario. The PSO algorithm was tasked to navigate a UAV from a starting point to a predetermined destination while avoiding spherical obstacles. The environment was set within a 3D grid with a series of waypoints, marking the UAV's trajectory, generated by the PSO to ensure obstacle avoidance and path optimization. The PSO parameters were meticulously tuned to balance the exploration and exploitation of the search space, with an emphasis on computational efficiency. A cost function penalizing proximity to obstacles guided the PSO in real-time decision-making, resulting in a collision-free and optimized path. The UAV's trajectory was visualized in both 2D and 3D perspectives, with the analysis focusing on the path's smoothness, length, and adherence to spatial constraints. The results affirm the PSO's effectiveness in UAV path planning, successfully avoiding obstacles and minimizing path length. The findings highlight PSO's potential for practical UAV applications, emphasizing the importance of parameter optimization. This research contributes to the advancement of autonomous UAV navigation, indicating PSO as a viable solution for real-world path planning challenges

    Autonomisen multikopteriparven hallinta etsintä- ja pelastustehtävissä

    Get PDF
    This thesis presents the requirements and implementation of a Ground Control Station (GCS) application for controlling a fleet of multicopters to perform a Search And Rescue (SAR) mission. The requirements are put together by analysing existing drone types, SAR practices, and available GCS applications. Multicopters are found to be the most feasible drone to use for the SAR use case because of their maneuverability, despite not having the best endurance. Several existing area coverage methods are presented and their usefulness is analyzed for SAR scenarios where different amounts of prior knowledge is available. It is stated that most search patterns can be used with a fleet of drones, by creating drone formations and by dividing the target area into sub-areas. It is noted that most currently available GCS applications are focused on controlling a single drone for either industrial or hobby use. A proof of concept prototype is developed on top of an open source GCS and tested in field tests. Based on all the previous learnings from the protype and research, a new GCS is designed and developed. The development on optimizing communications between the GCS and the autopilot leads to a filed patent application. The new software is tested with three multicopters in a water rescue scenario and several user interface improvements are made as a result of the learnings. The development of a GCS for controlling a drone fleet for search and rescue is proven feasible.Työssä esitetään multikopteriparven hallintaan käytettävän Ground Control Station (GCS) ohjelmiston vaatimukset ja toteutus Search And Rescue (SAR) etsintä- ja pelastustehtävien suorittamiseksi. Vaatimukset kootaan yhteen analysoimalla saatavilla olevia droonityyppejä, SAR pelastuskäytäntöjä, sekä GCS ohjelmistoja. Multikopterit osoittautuvat liikkuvuutensa ansiosta pelastustehtäviin sopivimmaksi vaihtoehdoksi, vaikka niiden saavutettavissa oleva lentoaika ei ole parhaimmasta päästä. Erilaisia etsintämetodeja esitetään alueiden kattamiseksi ja niiden hyödyllisyyttä analysoidaan SAR tilanteissa, joissa ennakkotietoa on saatavilla vaihtelevasti. Osoitetaan, että useimpia etsintäalgoritmeja voidaan hyödyntää drooniparvella, muodostamalla lentomuodostelmia, sekä jakamalla kohdealue pienempiin osa-alueisiin. Huomataan, että suurin osa tällä hetkellä saatavilla olevista GCS ohjelmistoista on suunnattu teollisuuden tai harrastelijoiden käyttöön, pääasiassa yksittäisen droonin hallintaan. Prototyyppi kehitetään avoimen lähdekoodin GCS ohjelmiston pohjalta ja testataan kenttätesteissä. Tästä saadun tiedon avulla suunnitellaan ja kehitetään uusi GCS ohjelmisto. Kehitystyö viestinnän optimoinniksi autopilotin ja GCS ohjelmiston välillä johtaa patenttihakemukseen. Uusi ohjelmisto testataan kolmella multikopterilla vesipelastustilanteessa ja sen seurauksena käyttöliittymään tehdään useita parannuksia. GCS ohjelmiston luominen drooniparven hallintaan etsintä- ja pelastustehtävissä todetaan mahdolliseksi

    New Applications of 3D SLAM on Risk Management Using Unmanned Aerial Vehicles in the Construction Industry

    Get PDF
    Risk Management is an integral part of the Corporate Governance of the Companies, whose objective is to estimate the risks related to each line of business and to make appropriate decisions regarding the adoption of preventive measures. The construction industry, due to its peculiar characteristics about occupational risks, is a sector that must pay particular attention to this issue. Unmanned aerial robots are part of a generation of new technologies, which are emerging in the attempt to develop robust and efficient algorithms capable of obtaining 3D models of structures under construction, to support the assessment of the situation in case of an eventuality, before the direct human intervention. This article proposes to develop a risk management strategy for the construction industry based on obtaining 3D models of work environments using drones, which will allow safe evaluation of risks present in construction zones
    corecore