1,790 research outputs found

    Three-dimensional CFD simulations with large displacement of the geometries using a connectivity-change moving mesh approach

    Get PDF
    This paper deals with three-dimensional (3D) numerical simulations involving 3D moving geometries with large displacements on unstructured meshes. Such simulations are of great value to industry, but remain very time-consuming. A robust moving mesh algorithm coupling an elasticity-like mesh deformation solution and mesh optimizations was proposed in previous works, which removes the need for global remeshing when performing large displacements. The optimizations, and in particular generalized edge/face swapping, preserve the initial quality of the mesh throughout the simulation. We propose to integrate an Arbitrary Lagrangian Eulerian compressible flow solver into this process to demonstrate its capabilities in a full CFD computation context. This solver relies on a local enforcement of the discrete geometric conservation law to preserve the order of accuracy of the time integration. The displacement of the geometries is either imposed, or driven by fluid–structure interaction (FSI). In the latter case, the six degrees of freedom approach for rigid bodies is considered. Finally, several 3D imposed-motion and FSI examples are given to validate the proposed approach, both in academic and industrial configurations

    High-fidelity Multidisciplinary Sensitivity Analysis and Design Optimization for Rotorcraft Applications

    Get PDF
    A multidisciplinary sensitivity analysis of rotorcraft simulations involving tightly coupled high-fidelity computational fluid dynamics and comprehensive analysis solvers is presented and evaluated. A sensitivity-enabled fluid dynamics solver and a nonlinear flexible multibody dynamics solver are coupled to predict aerodynamic loads and structural responses of helicopter rotor blades. A discretely consistent adjoint-based sensitivity analysis available in the fluid dynamics solver provides sensitivities arising from unsteady turbulent flows and unstructured dynamic overset meshes, while a complex-variable approach is used to compute structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Accuracy of the coupled system is validated by conducting simulations for a benchmark rotorcraft model and comparing solutions with established analyses and experimental data. Sensitivities of lift computed by the multidisciplinary sensitivity analysis are verified by comparison with the sensitivities obtained by complex-variable simulations. Finally the multidisciplinary sensitivity analysis is applied to a constrained gradient-based design optimization for a HART-II rotorcraft configuration

    Numerical modelling of the fluid-structure interaction in complex vascular geometries

    Get PDF
    A complex network of vessels is responsible for the transportation of blood throughout the body and back to the heart. Fluid mechanics and solid mechanics play a fundamental role in this transport phenomenon and are particularly suited for computer simulations. The latter may contribute to a better comprehension of the physiological processes and mechanisms leading to cardiovascular diseases, which are currently the leading cause of death in the western world. In case these computational models include patient-specific geometries and/or the interaction between the blood flow and the arterial wall, they become challenging to develop and to solve, increasing both the operator time and the computational time. This is especially true when the domain of interest involves vascular pathologies such as a local narrowing (stenosis) or a local dilatation (aneurysm) of the arterial wall. To overcome these issues of high operator times and high computational times when addressing the bio(fluid)mechanics of complex geometries, this PhD thesis focuses on the development of computational strategies which improve the generation and the accuracy of image-based, fluid-structure interaction (FSI) models. First, a robust procedure is introduced for the generation of hexahedral grids, which allows for local grid refinements and automation. Secondly, a straightforward algorithm is developed to obtain the prestress which is implicitly present in the arterial wall of a – by the blood pressure – loaded geometry at the moment of medical image acquisition. Both techniques are validated, applied to relevant cases, and finally integrated into a fluid-structure interaction model of an abdominal mouse aorta, based on in vivo measurements

    Time-accurate anisotropic mesh adaptation for three-dimensional time-dependent problems with body-fitted moving geometries

    Get PDF
    International audienceAnisotropic metric-based mesh adaptation has proved its efficiency to reduce the CPU time of steady and unsteady simulations while improving their accuracy. However, its extension to time-dependent problems with body-fitted moving geometries is far from straightforward. This paper establishes a well-founded framework for multiscale mesh adaptation of unsteady problems with moving boundaries. This framework is based on a novel space–time analysis of the interpolation error, within the continuous mesh theory. An optimal metric field, called ALE metric field, is derived, which takes into account the movement of the mesh during the adaptation. Based on this analysis, the global fixed-point adaptation algorithm for time-dependent simulations is extended to moving boundary problems, within the range of body-fitted moving meshes and ALE simulations. Finally, three dimensional adaptive simulations with moving boundaries are presented to validate the proposed approach

    A novel implementation of computational aerodynamic shape optimisation using Modified Cuckoo Search

    Get PDF
    This paper outlines a new computational aerodynamic design optimisation algorithm using a novel method of parameterising a computational mesh using `control nodes'. The shape boundary movement as well as the mesh movement is coupled to the movement of user--defined control nodes via a Delaunay Graph Mapping technique. A Modified Cuckoo Search algorithm is employed for optimisation within the prescribed design space defined by the allowed range of control node displacement. A finite volume compressible Navier--Stokes solver is used for aerodynamic modelling to predict aerodynamic design `fitness'. The resulting coupled algorithm is applied to a range of test cases in two dimensions including aerofoil lift--drag ratio optimisation intake duct optimisation under subsonic, transonic and supersonic flow conditions. The discrete (mesh--based) optimisation approach presented is demonstrated to be effective in terms of its generalised applicability and intuitiveness

    Aerodynamic optimization of an electric car surface

    Get PDF
    From an engineering, economical and sustainable perspective, performance is always a key factor that must be maximized. When it comes to road mobility, one of the aspects that concern both, the vehicle manufacturer and the user is the fuel consumption. The lower the consumption, the more appealing the product will be to the customers as it has less impact on both, the user’s economy and the environment. As a result, the consumer, the automobile manufacturer, and our planet, Earth are all benefited from a fuel consumption reduction. Thus, it is a win-win situation for all the parties involved. Fuel consumption is caused by several factors, however, one of the most prominent factors is drag. Therefore, an open-source gradient-based optimization framework has been implemented in this project to automatically parametrize the geometry, perform CFD simulations, compute derivatives implementing the discreteadjoint method in order to modify the vehicle shape with the aim of reducing the aerodynamic drag. Finally, the acquired results have been discussed and examined by comparing the drag coefficient, the geometrical shape, and the pressure distribution, velocity field, and the wake between the initial and the optimized case

    A Computational Fluid-Structure Interaction Method for Simulating Supersonic Parachute Inflation

    Get PDF
    Following the successful landing of the Curiosity rover on the Martian surface in 2012, NASA/JPL conducted the low-density supersonic decelerator (LDSD) missions to develop large diameter parachutes to land the increasingly heavier payloads being sent to the Martian surface. Unexpectedly, both of the tested parachutes failed far below their design loads. It became clear that there was an inability to model and predict loads that occur during supersonic parachute inflation. In this dissertation, a new computational method that was developed to provide NASA with the capability to simulate supersonic parachute inflation is presented and validated. The method considers the loose coupling of two different immersed boundary methods with a nonlinear finite element solver. Following validation on canonical FSI problems, methods to simulate the permeability of parachute broadcloth and to identify and enforce contact in parallel are presented and validated. The coupled solvers are first applied to the supersonic parachute problem on a sub-scale MSL parachute and capsule geometry, and subsequently, a full-scale test flight from the Advanced Supersonic Parachute Inflation Research Experiments (ASPIRE) is simulated. To the best of the author’s knowledge, these are the first FSI simulations to match the ASPIRE flight test data

    Automatic parallel octree grid generation software with an extensible solver framework and a focus on urban simulation

    Get PDF
    The development of an automatic, dynamic, parallel, Cartesian, linear forest-of-octree grid generator and partial differential equation (PDE) solver framework is presented. This research is bundled into an application programmed with C++ which uses MPI for distributed parallelism. The application is named paros which stands for PARallel Octree Solver. In its current implementation, the application provides a \u27zeroth\u27 order representation of the target geometry, and as such, no cut-cell algorithm, projection method, or immersed boundary condition are implemented. In this case, \u27zeroth\u27 order means that no geometry is ever exactly represented in the final computational mesh: an octree element is either completely in the domain or entirely outside of it. Any element that contains or is intersected by a geometry facet is removed from the final mesh which results in a \u27blocky\u27 or \u27stepped\u27 geometry representation and simplifies boundary computations. The computational octree mesh creation is completely parallel and automated. The algorithm is dynamic in the sense that it is repartitioned dynamically throughout the grid generation process to maintain optimal load balancing during all phases of the mesh genesis. A linear octree data structure is used to store the octree mesh elements and is leveraged for optimal load balancing. An additional hierarchical octree is used to significantly improve algorithms that suffer from this linear storage paradigm. This work focuses on, but is not limited to, applications related to urban simulations and may be applied to plume/contaminant propagation. Within the PDE solution framework a cell-centered, incompressible, unsteady, Navier Stokes solver with an energy term to account for thermal buoyancy is implemented and validated using canonical test cases. Turbulence closure is implemented in the form of the Smagorinski large eddy simulation (LES) model. The parallel grid generation and solution process is tested on a large scale cityscape geometry and shown to be robust and efficient. Additionally, an implementation of the compressible Navier-Stokes equations is coded within the framework. The framework is extensible such that adding other types of numerical PDE solvers should not be difficult. Other features including adaptive mesh refinement (AMR) and contaminant transport functionality are included

    The application of computational fluid dynamics to the modelling and design of high-speed boats

    Get PDF
    Computational fluid dynamics solvers were applied to the field of high-speed boat design. The lattice Boltzmann method was used to assess the water-phase of the flow around a number of high-speed hullform geometries, and was validated against empirical industry and literature data. A heave dynamics capability was developed to assess the heave equilibrium position of a high speed boat, showing close agreement with industry data. A mesh movement and evolutionary optimisation software was applied to the aero-dynamic optimisation of a high-speed catamaran using a Reynolds-averaged Navier-Stokes solver for modelling of the air phase of the flow
    corecore