475 research outputs found

    The Number of Triangles Needed to Span a Polygon Embedded in R^d

    Full text link
    Given a closed polygon P having n edges, embedded in R^d, we give upper and lower bounds for the minimal number of triangles t needed to form a triangulated PL surface in R^d having P as its geometric boundary. The most interesting case is dimension 3, where the polygon may be knotted. We use the Seifert suface construction to show there always exists an embedded surface requiring at most 7n^2 triangles. We complement this result by showing there are polygons in R^3 for which any embedded surface requires at least 1/2n^2 - O(n) triangles. In dimension 2 only n-2 triangles are needed, and in dimensions 5 or more there exists an embedded surface requiring at most n triangles. In dimension 4 we obtain a partial answer, with an O(n^2) upper bound for embedded surfaces, and a construction of an immersed disk requiring at most 3n triangles. These results can be interpreted as giving qualitiative discrete analogues of the isoperimetric inequality for piecewise linear manifolds.Comment: 16 pages, 4 figures. This paper is a retitled, revised version of math.GT/020217

    Chromatic Numbers of Simplicial Manifolds

    Full text link
    Higher chromatic numbers χs\chi_s of simplicial complexes naturally generalize the chromatic number χ1\chi_1 of a graph. In any fixed dimension dd, the ss-chromatic number χs\chi_s of dd-complexes can become arbitrarily large for s≤⌈d/2⌉s\leq\lceil d/2\rceil [6,18]. In contrast, χd+1=1\chi_{d+1}=1, and only little is known on χs\chi_s for ⌈d/2⌉<s≤d\lceil d/2\rceil<s\leq d. A particular class of dd-complexes are triangulations of dd-manifolds. As a consequence of the Map Color Theorem for surfaces [29], the 2-chromatic number of any fixed surface is finite. However, by combining results from the literature, we will see that χ2\chi_2 for surfaces becomes arbitrarily large with growing genus. The proof for this is via Steiner triple systems and is non-constructive. In particular, up to now, no explicit triangulations of surfaces with high χ2\chi_2 were known. We show that orientable surfaces of genus at least 20 and non-orientable surfaces of genus at least 26 have a 2-chromatic number of at least 4. Via a projective Steiner triple systems, we construct an explicit triangulation of a non-orientable surface of genus 2542 and with face vector f=(127,8001,5334)f=(127,8001,5334) that has 2-chromatic number 5 or 6. We also give orientable examples with 2-chromatic numbers 5 and 6. For 3-dimensional manifolds, an iterated moment curve construction [18] along with embedding results [6] can be used to produce triangulations with arbitrarily large 2-chromatic number, but of tremendous size. Via a topological version of the geometric construction of [18], we obtain a rather small triangulation of the 3-dimensional sphere S3S^3 with face vector f=(167,1579,2824,1412)f=(167,1579,2824,1412) and 2-chromatic number 5.Comment: 22 pages, 11 figures, revised presentatio
    • …
    corecore