3,237,620 research outputs found

    The three-body problem

    Full text link
    The three-body problem, which describes three masses interacting through Newtonian gravity without any restrictions imposed on the initial positions and velocities of these masses, has attracted the attention of many scientists for more than 300 years. In this paper, we present a review of the three-body problem in the context of both historical and modern developments. We describe the general and restricted (circular and elliptic) three-body problems, different analytical and numerical methods of finding solutions, methods for performing stability analysis, search for periodic orbits and resonances, and application of the results to some interesting astronomical and space dynamical settings. We also provide a brief presentation of the general and restricted relativistic three-body problems, and discuss their astronomical applications.Comment: 49 pages, 10 figures, Published in Reports on Progress in Physic

    In-matter three-body problem

    Full text link
    We formulate three-dimensional equations for the finite temperature in-matter three-body problem. Our approach takes into account the full infinite series for the effective pair-interaction kernel, so that all possible two-body sub-processes allowed by the underlying Hamiltonian are retained.Comment: 5 pages, contribution to The 16th National Congress 2005 - Australian Institute of Physic

    3. The gravitational three-body problem

    Get PDF

    Three-potential formalism for the atomic three-body problem

    Get PDF
    Based on a three-potential formalism we propose mathematically well-behaved Faddeev-type integral equations for the atomic three-body problem and descibe their solutions in Coulomb-Sturmian space representation. Although the system contains only long-range Coulomb interactions these equations allow us to reach solution by approximating only some auxiliary short-range type potentials. We outline the method for bound states and demonstrate its power in benchmark calculations. We can report a fast convergence in angular momentum channels.Comment: considerably revised, 9 pages, revtex, 1 ps figur

    Effective Interactions for the Three-Body Problem

    Full text link
    The three-body energy-dependent effective interaction given by the Bloch-Horowitz (BH) equation is evaluated for various shell-model oscillator spaces. The results are applied to the test case of the three-body problem (triton and He3), where it is shown that the interaction reproduces the exact binding energy, regardless of the parameterization (number of oscillator quanta or value of the oscillator parameter b) of the low-energy included space. We demonstrate a non-perturbative technique for summing the excluded-space three-body ladder diagrams, but also show that accurate results can be obtained perturbatively by iterating the two-body ladders. We examine the evolution of the effective two-body and induced three-body terms as b and the size of the included space Lambda are varied, including the case of a single included shell, Lambda hw=0 hw. For typical ranges of b, the induced effective three-body interaction, essential for giving the exact three-body binding, is found to contribute ~10% to the binding energy.Comment: 19 pages, 9 figures, submitted to PR

    Three-body problem at finite temperature and density

    Get PDF
    We derive practical three-body equations for the equal-time three-body Green function in matter. Our equations describe both bosons and fermions at finite density and temperature, and take into account all possible two-body sub-processes allowed by the underlying Hamiltonian.Comment: 24 pages, revtex

    The three-body problem and the Hannay angle

    Full text link
    The Hannay angle has been previously studied for a celestial circular restricted three-body system by means of an adiabatic approach. In the present work, three main results are obtained. Firstly, a formal connection between perturbation theory and the Hamiltonian adiabatic approach shows that both lead to the Hannay angle; it is thus emphasised that this effect is already contained in classical celestial mechanics, although not yet defined nor evaluated separately. Secondly, a more general expression of the Hannay angle, valid for an action-dependent potential is given; such a generalised expression takes into account that the restricted three-body problem is a time-dependent, two degrees of freedom problem even when restricted to the circular motion of the test body. Consequently, (some of) the eccentricity terms cannot be neglected {\it a priori}. Thirdly, we present a new numerical estimate for the Earth adiabatically driven by Jupiter. We also point out errors in a previous derivation of the Hannay angle for the circular restricted three-body problem, with an action-independent potential.Comment: 11 pages. Accepted by Nonlinearit

    Perihelion librations in the secular three--body problem

    Get PDF
    A normal form theory for non--quasi--periodic systems is combined with the special properties of the partially averaged Newtonian potential pointed out in [15] to prove, in the averaged, planar three--body problem, the existence of a plenty of motions where, periodically, the perihelion of the inner body affords librations about one equilibrium position and its ellipse squeezes to a segment before reversing its direction and again decreasing its eccentricity (perihelion librations).Comment: 3 Figures, 30 page
    corecore