8,206 research outputs found

    ?????? ?????? ??????????????? ?????? ????????????

    Get PDF
    Department of Computer Science and EngineeringRecently deep reinforcement learning (DRL) algorithms show super human performances in the simulated game domains. In practical points, the sample efficiency is also one of the most important measures to determine the performance of a model. Especially for the environment of large search spaces (e.g. continuous action space), it is very critical condition to achieve the state-of-the-art performance. In this thesis, we design a model to be applicable to multi-end games in continuous space with high sample efficiency. A multi-end game has several sub-games which are independent each other but affect the result of the game by some rules of its domain. We verify the algorithm in the environment of simulated curling.clos

    Combining Planning and Deep Reinforcement Learning in Tactical Decision Making for Autonomous Driving

    Full text link
    Tactical decision making for autonomous driving is challenging due to the diversity of environments, the uncertainty in the sensor information, and the complex interaction with other road users. This paper introduces a general framework for tactical decision making, which combines the concepts of planning and learning, in the form of Monte Carlo tree search and deep reinforcement learning. The method is based on the AlphaGo Zero algorithm, which is extended to a domain with a continuous state space where self-play cannot be used. The framework is applied to two different highway driving cases in a simulated environment and it is shown to perform better than a commonly used baseline method. The strength of combining planning and learning is also illustrated by a comparison to using the Monte Carlo tree search or the neural network policy separately
    corecore